DOI QR코드

DOI QR Code

FT-Indoornavi: A Flexible Navigation Method Based on Topology Analysis and Room Internal Path Networks for Indoor Navigation

FT-IndoorNavi: 토폴로지 분석 및 실내 경로 네트워크 분석에 기반한 실내 네비게이션을 위한 유연한 네비게이션 알고리즘

  • Zhou, Jian (Dept. of Computer & Information Engineering, Inha University) ;
  • Li, Yan (Dept. of Computer & Information Engineering, Inha University) ;
  • Lee, Soon Jo (Dept. of Computer Education, Seowon University) ;
  • Bae, Hae Young (Dept. of Computer & Information Engineering, Inha University)
  • Received : 2013.02.02
  • Accepted : 2013.03.25
  • Published : 2013.04.30

Abstract

Recently many researches have focused on indoor navigation system. An optimal indoor navigation method can help people to find a path in large and complex buildings easily. However, some indoor navigation algorithms only calculate approximate routes based on spatial topology analysis, while others only use indoor road networks. However, both of them use only one of the spatial topology or network information. In this paper, we present a navigation method based on topology analysis and room internal networks for indoor navigation path. FT-Indoornavi (Flexible Topology Analysis Indoornavi) calculate internal routes based on spatial topology and internal path networks to support length-dependent and running-time optimal routing, which adapt to complex indoor environment and can achieve a better performance in comparison of Elastic algorithm and iNav.

최근 이동통신 기술의 발전으로 실내에서의 위치 획득 기술이 용이해지면서 실내 내비게이션 시스템에 대한 연구가 각광을 받고 있다. 최적화된 실내 내비게이션은 크고 복잡한 실내에서의 활동을 위해 빠른 경로를 제공한다. 그러나 기존의 실내 내비게이션 알고리즘 연구들에서는 공간 토폴로지 또는 실내 네트워크에 기반하여 대략적인 경로를 도출한다. 본 논문에서는 공간 토폴로지 분석과 실내 내트워크를 통합 분석하여 실내 경로를 계산하는 알고리즘을 제안한다. 제안 알고리즘은 전문적인 실내지도가 아닌 간소화된 실내 지도 데이터를 활용하여 실내 네트워크와 공간 토폴로지의 혼합 분석을 통해 실내 경로의 길이를 줄일 수 있다. 성능평가를 통해 FT-Indoornavi 알고리즘이 기존의 엘라스틱 알고리즘과 iNav 알고리즘보다 더 빨리 실내 경로를 계산할 수 있음을 보여준다.

Keywords

References

  1. Afyouni, I; Ray, C; Claramunt, C; 2012, Spatial models for indoor and context-aware navigation systems: A survey. Journal of Spatial Information Science, 4: 85-123.
  2. Chen, Y; Wu, K; Wang, D; Chen, G. 2006, Elastic Algorithm: A New Path Planning Algorithm About Auto-navigation in 3D Virtual Scene, ICAT 2006: 1156-1165.
  3. Dao, E. A. 2012, Spatial models for context-aware indoor navigation systems: A survey, International Journal of Geographical Information Science, 26 (3), 469-494. https://doi.org/10.1080/13658816.2011.597753
  4. Dijkstra, E. W. 1959, A note on two problems in connexion with graphs[J], Numerische Mathematik, 1(1): 267-271.
  5. Faloutsos C; Ranganathan M; Manolopoulos Y. 1994, Fast Subsequence Matching in Time-Series Databases. Proceedings of ACM SIGMOD Int'l Conference on Management of Data, Minneapolis, Minnesota, pages 419-429.
  6. Guha, R. K; Chen, W. 2009, A distributed traffic navigation system using vehicular communication, Proc. of 1st. IEEE Vehicular Network Conference.
  7. Goetz, M; Zipf, A. 2011, Formal Definition of a User-Adaptive and Length-Optimal Routing Graph for Complex Indoor Environments, Geo-spatial Information Science, 14(2): 119-128. https://doi.org/10.1007/s11806-011-0474-3
  8. Hart, P. E; Nilsson, N. J; Raphael, B. 1968, A formal basis for the heuristic determination of minimum cost paths[J], Transactions on Systems Science and Cybernetics SSC, 4(2): 100-107. https://doi.org/10.1109/TSSC.1968.300136
  9. Hoppenot, P; Pradel, G; Caleanu, C; Perrin, N; Sommeilly, V. 2003, Towards a Symbolic Representation of an Indoor Environment, IEEE CESA 2003.
  10. Hector, G; Han J, W; Li, X. L; Myslinska, M; Sondag, J. P. 2007, Adaptive Fastest Path Computation on a Road Network: A Traffic Mining Approach. VLDB 2007: 794-80.
  11. Lu, E. H; Lee, W. C; Tseng, V. S. 2011, A Framework for Personal Mobile Commerce Pattern Mining and Prediction, IEEE Transactions on Knowledge and Data Engineering, v.24 n.5, p.769-782.
  12. Lee, K; Lee J. 2013, A Geocoding Method on Character Matching In Indoor Space, Journal of Korea Spatial Information Society, 21(1):87-100. https://doi.org/10.12672/ksis.2013.21.1.087
  13. Lee, S; Lee J. 2011, Navigable Space-Relation Model for Indoor Space Analysis, Journal of Korea Spatial Information Society, 19(5):75-86.
  14. Park, I; Jang, G. U; Park, S; Lee, J. 2009, Time-Dependent Optimal Routing in Micro-scale Emergency Situation. 10th Int. Conf. on Mobile Data Management: Systems, Services and Middleware, pages 714-719.
  15. Raubal, M; Egenhofer, M. 1998, Comparing the complexity of wayfinding tasks in built environments[J], Environment and Planning B-Planning & Design, 25(6): 895-913. https://doi.org/10.1068/b250895
  16. Shen, J. W; Wu, M. G; LV, G. N; Wen, Y. N; Wang, X; Zhang, H. P. 2010, Topological relationships calculation for 3D curves data set based on monotone chains. In Geoinformatics, 2010 18th International Conference on, pp. 1-5.
  17. Wang, X. l ; Pang, X. Y;Luo, Y. 2010, W. LBS-p: A LBS Platform SupportingOnline Map Services, Vehicular Technology Conference FSpatial models for context-aware indoor navigation systems: A survey, International Journal of Geographical Information Scienceall (VTC 2010-Fall): 1-5.
  18. Xu, T. Y; Zhou, Y. C. 2012, Topology Analysis of Rural Power Distribution Network Based on Spatial Database, Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific.
  19. Yu, Z. W; Liang, Y. J; Xu, B. K; Xu, Y; Guo, B. 2011, Towards a Smart Campus with Mobile Social Networking, in Proc. 2011 4th International Conference on Cyber, Physical and Social Computing, pp:162-169.
  20. Yuan, W. J; Markus, S. 2010, iNav: An Indoor Navigation Model Supporting Length-Dependent Optimal Routing. In Proc. of AGILE, pages 299-314.
  21. Yuan, W; Schneider, M. 2010, Supporting 3d route planning in indoor space based on the lego representation. In: 2nd ACM SIGSPATIAL Int, Workshop on Indoor Spatial Awareness (ISA), pp. 16-23.

Cited by

  1. Construction of Indoor and Outdoor Spatial Information Integration Service System based on Vector Model vol.36, pp.3, 2013, https://doi.org/10.7848/ksgpc.2018.36.3.185