• 제목/요약/키워드: Elastic Foundation Effect

검색결과 254건 처리시간 0.028초

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels

  • Shen, Hui-Shen;Xiang, Y.
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.423-435
    • /
    • 2021
  • This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad;Daman, Mohsen;Fardshad, Ramin Ebrahimi
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

종동력을 받는 외팔 Timoshenko보의 동적안정성에 미치는 부분탄성기초의 영향 (Effect of a Partial Elastic Foundation on Dynamic Stability of a Cantilevered Timoshenko Beam under a Follower Force)

  • 류봉조;류시웅;한현희;김효준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.911-916
    • /
    • 2004
  • The paper deals with the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam is assumed to be a Timoshenko beam with a concentrated mass taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and FEM is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, concentrated mass and rotary inertia of the beam is fully investigated.

  • PDF

Vibration analysis of steel frames with semi-rigid connections on an elastic foundation

  • Vu, Anh Q.;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.265-280
    • /
    • 2008
  • An investigation on the combined effect of foundation type, foundation flexibility, axial load and PR (semi-rigid) connections on the natural frequencies of steel frames is presented. These effects were investigated using a suitable modified FE program for cases where the foundation flexibility, foundation connectivity, and semi-rigid connections could be treated as equivalent linear springs. The effect of axial load on the natural frequency of a structure was found to be significant for slender structures subjected to high axial loads. In general, if columns of medium slenderness are designed without consideration of axial load effects, the frequency of the structure will be overestimated. Studies on the 3-story Los Angeles PR SAC frame indicate that the assumption of rigid connections at beam-column and column-base interfaces, as well as the assumption of a rigid foundation, can lead to significant errors if simplified design procedures are used. These errors in an equivalent static analysis are expected to lead to even more serious problems when considering the effect of higher modes under a non-linear dynamic analysis.

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답해석 (Transient Response Analysis of Rotating Blade Considering Friction Damping Effect of Elastically Restrained Root in Resonant Frequency Range)

  • 윤경재
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.100-112
    • /
    • 2003
  • This paper presents the transient response analysis of a rotating blade in resonant frequency range. It is shown that the modeling is considered in elastic foundation and friction damping effect. The equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. Numerical results show that the magnitude of friction damping to reduce maximum transient response in near the critical angular speed. The method can be applied to a number of examples of the practical rotating blade system to minimize transient response in resonant frequency range.

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation

  • Mohammadimehr, Mehdi;Arshid, Ehsan;Alhosseini, Seyed Mohammad Amin Rasti;Amir, Saeed;Arani, Mohammad Reza Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.683-702
    • /
    • 2019
  • The present study aims to analyze the magneto-electro-elastic (MEE) vibration of a functionally graded carbon nanotubes reinforced composites (FG-CNTRC) cylindrical shell. Electro-magnetic loads are applied to the structure and it is located on an elastic foundation which is simulated by visco-Pasternak type. The properties of the nano-composite shell are assumed to be varied by temperature changes. The third-order shear deformation shells theory is used to describe the displacement components and Hamilton's principle is employed to derive the motion differential equations. To obtain the results, Navier's method is used as an analytical solution for simply supported boundary condition and the effect of different parameters such as temperature variations, orientation angle, volume fraction of CNTs, different types of elastic foundation and other prominent parameters on the natural frequencies of the structure are considered and discussed in details. Design more functional structures subjected to multi-physical fields is of applications of this study results.

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT

  • Bennai, Riadh;Mellal, Fatma;Nebab, Mokhtar;Fourn, Hocine;Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Hussain, Muzamal
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.447-460
    • /
    • 2022
  • In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.

연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동 (Free Vibrations of Curved Members Resting on Elastic Foundation with Continuity Effect)

  • 이병구;박광규;오상진;진태기
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.371-379
    • /
    • 2001
  • 이 논문은 연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동에 관한 연구이다. 연속성을 갖는 탄성지반을 Pasternak 지반으로 모형화하여 곡선부재의 자유진동을 지배하는 무차원 상미분방정식을 유도하였다. 상미분방정식에는 회전관성과 전단변형효과를 고려하였다. 곡선부재의 선형은 원호형, 포물선형, 정현형, 타원형의 4가지를 채택하였고, 단부조건으로는 회전-회전, 회전-고정, 고정-고정의 3가지를 채택하였다. 실험실 규모의 실험을 실시하고 본 연구의 결과와 비교하여 연구의 타당성을 검증하였다. 수치해석의 결과로 무차원 고유진동수와 곡선부재의 변수들 사이의 관계를 표 및 그림에 나타내었으며 진동형의 예를 그림에 나타내었다.

  • PDF