Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.5.423

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels  

Shen, Hui-Shen (School of Aeronautics and Astronautics, Shanghai Jiao Tong University)
Xiang, Y. (School of Engineering, Design and Built Environment, Western Sydney University)
Publication Information
Advances in nano research / v.10, no.5, 2021 , pp. 423-435 More about this Journal
Abstract
This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.
Keywords
auxetic materials; temperature-dependent; functionally graded; cylindrical panels; thermal post-buckling; elastic foundation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica, 51, 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.   DOI
2 Mirzaei, M. and Kiani, Y. (2017), "Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation", Compos. Struct., 180, 606-616. https://doi.org/10.1016/j.compstruct.2017.08.057.   DOI
3 Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405, 1301-1306. https://doi.org/ 10.1016/j.physb.2009.11.071.   DOI
4 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A. (2004), "Electric filed effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896.   DOI
5 Mir, M., Ali, M.N., Sami, J. and Ansari, U. (2014), "Review of mechanics and applications of auxetic structures", Adv. Mater. Sci. Eng., 2014, 753496. https://doi.org/10.1155/2014/753496.   DOI
6 Panda, S.K. and Singh, B.N. (2013), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20, 842-853. https://doi.org/10.1080/15376494.2012.677097.   DOI
7 Paley, M. and Aboudi, J. (1991), "Inelastic thermal buckling of metal matrix laminated plates", J. Thermal Stress., 14, 479-497. https://doi.org/10.1080/01495739108927081.   DOI
8 Prawoto, Y. (2012), "Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio", Comput. Mater. Sci., 58, 140-153. https://doi.org/10.1016/j.commatsci.2012.02.012.   DOI
9 Roh, J.H., Oh, I.K., Yang, S.M., Han, J.H. and Lee, I. (2004), "Thermal post-buckling analysis of shape memory alloy hybrid composite shell panels", Smart Mater. Struct., 13, 1337-1344. https://doi.org/10.1088/0964-1726/13/6/006.   DOI
10 Lin, F., Xiang, Y. and Shen, H.-S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites - a molecular dynamics simulation", Compos. Part B-Eng., 111, 261-269. https://doi.org/10.1016/j.compositesb.2016.12.004.   DOI
11 Shen, H.-S., Huang, X.-H. and Yang, J. (2020b), "Nonlinear bending of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Mech. Adv. Mater. Struct., 27, 1141-1153. https://doi.org/10.1080/15376494.2020.1716412.   DOI
12 Hine, P.J., Duckett, R.A. and Ward, I.M. (1997), "Negative Poisson's ratios in angle-ply laminates", J. Mater. Sci. Lett., 16, 541-544. https://doi.org/10.1023/A:1018505503088.   DOI
13 Sahmani, S. and Fattahi, A.M. (2017), "Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments", Acta Mech., 228, 3789-3810. https://doi.org/10.1007/s00707-017-1912-6.   DOI
14 Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91, 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.   DOI
15 Shen, H.-S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc.
16 Harkati, E.H., Bezazi, A., Scarpa, F., Alderson, K. and Alderson, A. (2007), "Modelling the influence of the orientation and fibre reinforcement on the Negative Poisson's ratio in composite laminates", Phys. Status Solidi B, 244, 883-892. https://doi.org/10.1002/ pssb.200572707.   DOI
17 Saxena, K.K., Das, R. and Calius, E.P. (2016), "Three decades of auxetics research-materials with negative Poisson's ratio: A review", Adv. Eng. Mater., 18, 1847-1870. https://doi.org/10.1002/adem.201600053   DOI
18 Sharma, S., Kumar, P. and Chandra, R. (2017), "Mechanical and thermal properties of graphene-carbon nanotube-reinforced metal matrix composites: A molecular dynamics study", J. Compos. Mater., 51, 3299-3313. https://doi.org/10.1177/0021998316682363.   DOI
19 She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010.   DOI
20 Tabandeh-Khorshid, M., Kumar, A., Omrani, E., Kim, C. and Rohatgi, P. (2020), "Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites", Compos. Part B-Eng., 183, 107664. https://doi.org/10.1016/j.compositesb.2019.107664.   DOI
21 Li, C., Shen, H.-S., Wang, H. and Yu, Z. (2020b), "Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core", Int. J. Mech. Sci., 174, 105472. https://doi.org/10.1016/j.ijmecsci.2020.105472.   DOI
22 Li, C., Shen, H.-S. and Wang, H. (2019c), "Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Euro. Phys. J. Plus, 134, 79. https://doi.org/10.1140/epjp/i2019-12572-7.   DOI
23 Li, C., Shen, H.-S. and Wang, H. (2019d), "Nonlinear vibration of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Int. J. Struct. Stabil. Dyn., 19, 1950034. https://doi.org/10.1142/S0219455419500342.   DOI
24 Li, C., Shen, H.-S. and Wang, H. (2020a), "Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core", Compos. Struct., 237, 111894. https://doi.org/10.1016/j.compstruct.2020.111894.   DOI
25 Li, C., Shen, H.-S. and Wang, H. (2020c), "Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core", Nonlinear Dyn., 100, 3235-3252. https://doi.org/10.1007/s11071-020-05686-4.   DOI
26 Li, C., Shen, H.-S. and Wang, H. (2020d), "Full-scale finite element modeling and nonlinear bending analysis of sandwich plates with functionally graded auxetic 3D lattice core", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636220924657.   DOI
27 Liu, Q. (2006), "Literature review: Materials with negative Poisson's ratios and potential applications to aerospace and defence", Report no. dsto-gd-0472, Defence Science and Technology Organisation, Department of Defence, Australian Government.
28 Tran, L.V., Wahab, M.A. and Kim, S.E. (2017), "An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates", Compos. Struct., 179, 35-49. https://doi.org/10.1016/j.compstruct.2017.07.056.   DOI
29 Shen, H.-S. (2009b), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos, Struct., 91, 9-19. https://doi.org/10.1016/ j.compstruct.2009.04.026.   DOI
30 Shen, H.-S. (2017), Postbuckling Behavior of Plates and Shells, World Scientific Publishing Co. Pte. Ltd., Singapore.
31 Oh, I.K. and Lee, I. (2001), "Thermal snapping and vibration characteristics of cylindrical composite panels using layerwise theory", Compos. Struct., 51, 49-61. https://doi.org/10.1016/S0263-8223(00)00123-9.   DOI
32 Li, C., Shen, H.-S. and Wang, H. (2019b), "Nonlinear bending of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Compos. Struct., 212, 317-325. https://doi.org/10.1016/j.compstruct.2019.01.020.   DOI
33 Shen, H.-S. (2009a), Functionally Graded Materials Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton.
34 Duc, N.D. and Cong, P.H. (2018), "Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson's ratio in auxetic honeycombs", J. Sandw. Struct. Mater., 20, 692-717. https://doi.org/10.1177/1099636216674729.   DOI
35 Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., Int. J., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.   DOI
36 Evans, K.E., Donoghue, J.P. and Alderson, K.L. (2004), "The design, matching and manufacture of auxetic carbon fibre laminates", J. Compos. Mater., 38, 95-105. https://doi.org/10.1177/0021998304038645.   DOI
37 Shen, H.-S., Li, C. and Reddy, J.N. (2020a), "Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson's ratio", Comput. Methods Appl. Mech. Eng., 360, 112727. https://doi.org/10.1016/j.cma.2019.112727.   DOI
38 Fan, Y. and Wang, Y. (2021), "The effect of negative Poisson's ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam", Int. J. Mech. Mater. Des., 17(1), 153-169. https://doi.org/ 10.1007/s10999-020-09521-x.   DOI
39 Fan, Y., Xiang, Y. and Shen, H.-S. (2019), "Temperature-dependent negative Poisson's ratio of monolayer graphene: Prediction from molecular dynamics simulations", Nanotechnol. Rev., 8, 415-421. https://doi.org/10.1515/ntrev-2019-0037.   DOI
40 Fattahi, A.M. and Sahmani, S. (2017), "Size dependency in the axial postbuckling behavior of nanopanels made of functionally graded material considering surface elasticity", Arab. J. Sci. Eng., 42, 4617-4633. https://doi.org/10.1007/s13369-017-2600-5.   DOI
41 Herakovich, C.T. (1984), "Composite laminates with Negative through-the-thickness Poisson's ratios", J. Compos. Mater., 18, 447-455. https://doi.org/10.1177/ 002199838401800504.   DOI
42 Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J. and Zhou, L. (2016), "Graphene-reinforced metal matrix nanocomposites-A review", Mater. Sci. Technol., 32, 930-953. https://doi.org/10.1080/02670836.2015.1104018.   DOI
43 Trang, L.T.N. and Tung, H.V. (2020), "Thermally induced postbuckling of higher order shear deformable CNT-reinforced composite flat and cylindrical panels resting on elastic foundations with elastically restrained edges", Mech. Based Des. Struct. Machin., 1-24. https://doi.org/10.1080/15397734.2020.1785312.   DOI
44 Yang, J., Huang, X.-H. and Shen, H.-S. (2020c), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson's Ratio", Int. J. Struct. Stabil. Dyn., 20, 2050043. https://doi.org/10.1142/S0219455420500431.   DOI
45 Yeh, H.L. amd Yeh, H.Y. (1999), "A discussion of negative poisson's ratio design for composites", J. Reinf. Plastics Compos., 18, 1546-1556. https://doi.org/10.1177/073168449901801701.   DOI
46 Yang, J., Huang, X.-H. and Shen, H.-S. (2020b), "Nonlinear flexural behavior of temperature-dependent FG-CNTRC laminated beams with negative Poisson's ratio resting on the Pasternak foundation", Eng. Struct., 207, 110250. https://doi.org/10.1016/ j.engstruct.2020.110250.   DOI
47 Shen, H.-S., Xiang, Y. and Reddy, J.N. (2020c), "Effect of negative Poisson's ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments", Compos. Struct., 253, 112731. https://doi.org/10.1016/j.compstruct.2020.112731.   DOI
48 Sun, C.T. and Li, S.J. (1988), "Three-dimensional effective elastic constants for thick laminates", J. Compos. Mater., 22, 629-639. https://doi.org/10.1177/002199838802200703.   DOI
49 Huang, C. and Chen, L. (2016), "Negative Poisson's ratio in modern functional materials", Adv. Mater., 28, 8079-8096. https://doi.org/10.1002/adma.201601363.   DOI
50 Shen, H.-S. and Wang, H. (2013), "Thermal postbuckling of functionally graded fiber reinforced composite cylindrical shells surrounded by an elastic medium", Compos. Struct., 102, 250-260. https://doi.org/10.1016/j.compstruct.2013.03.011.   DOI
51 Tung, H.V. and Trang, L.T.N. (2020), "Thermal post-buckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties", J. Thermoplastic Compos. Mater., 33, 97-124. https://doi.org/10.1177/ 0892705718804588.   DOI
52 Feldman, E. (1996), "The effect of temperature-dependent material properties on elasto-viscoplastic buckling behaviour of non-uniformly heated MMC plates", Compos. Struct., 35, 65-74. https://doi.org/10.1016/0263-8223(96)00024-4.   DOI
53 Shen, H.-S. and Xiang, Y. (2015), "Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations", Compos. Struct., 123, 383-392. https://doi.org/ 10.1016/j.compstruct.2014.12.059.   DOI
54 Chen, X. and Feng, Z. (2017), "Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to inplane excitation", Mech. Res. Commun., 85, 45-52. https://doi.org/10.1016/j.mechrescom.2017.07.013.   DOI
55 Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23, 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.   DOI
56 Shen, L., Shen, H.-S. and Zhang, C.L. (2010), "Temperature-dependent elastic properties of single layer graphene sheets", Mater. Des., 31, 4445-4449. https://doi.org/10.1016/j.matdes.2010.04.016.   DOI
57 Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Methods Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.   DOI
58 Alderson, K.L. and Coenen, V.L. (2008), "The low velocity impact response of auxetic carbon fibre laminates", Phys. Stat. Sol. B, 245, 489-496. https://doi.org/10.1002/pssb.200777701.   DOI
59 Ansari, R., Torabi, J. and Hassani, R. (2019), "Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates", Comput. Math. Appl., 77, 1294-1311. https://doi.org/10.1016/j.camwa.2018.11.009   DOI
60 Yang, J., Huang, X.-H. and Shen, H.-S. (2020a), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin-Walled Struct., 148, 106514. https://doi.org/10.1016/j.tws.2019.106514.   DOI
61 Feldman, E. and Aboudi, J. (1995), "Thermal postbuckling of metal matrix laminated plates", J. Thermal Stress., 18, 197-218. https://doi.org/10.1080/01495739508946299.   DOI
62 Clarke, J.F., Duckett, R.A., Hine, P.J., Hutchinson, I.J. and Ward, I.M. (1994), "Negative Poisson's ratios in angle-ply laminates: theory and experiment", Compos., 25, 863-868. https://doi.org/10.1016/0010-4361(94)90027-2.   DOI
63 Huang, X.-H., Yang, J., Bai, L., Wang, X. and Ren, X. (2020a), "Theoretical solutions for auxetic laminated beam subjected to a sudden load", Structures, 28, 57-68. https://doi.org/10.1016/j.istruc.2020.08.030.   DOI
64 Azoti, W.L., Koutsawa, Y., Bonfoh, N., Lipinski, P. and Belouettar, S. (2013), "Analytical modeling of multilayered dynamic sandwich composites embedded with auxetic layers", Eng. Struct., 57, 248-253. https://doi.org/10.1016/j.engstruct.2013.09.030   DOI
65 Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Application of two-steps perturbation technique to geometrically nonlinear analysis of long FGM cylindrical panels on elastic foundation under thermal load", J. Thermal Stress., 41, 847-865. https://doi.org/ 10.1080/01495739.2017.1421054.   DOI
66 Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface", Compos. Struct., 220, 888-898. https://doi.org/10.1016/j.compstruct.2019.03.064.   DOI
67 Bayat, M.R. and Mashhadi, M.M. (2018), "Low-velocity impact response of sandwich cylindrical panels with nanotube-reinforced and metal face sheet in thermal environment", Aeronaut. J., 122, 1943-1966. https://doi.org/10.1017/aer.2018.104.   DOI
68 Cong, P.H., Khanh, N.D., Khoa, N.D. and Duc, N.D. (2018), "New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT", Compos. Struct., 185, 455-465. https://doi.org/10.1016/j.compstruct.2017.11.047.   DOI
69 Huang, X.-H., Yang, J., Wang, X. and Azim, I. (2020b), "Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load", Eng. with Comput. https://doi.org/10.1007/s00366-020-01106-8.   DOI
70 Dadkhah, M., Saboori, A. and Fino, P. (2019), "An overview of the recent developments in metal matrix nanocomposites reinforced by graphene", Materials, 12, 2823. https://doi.org/10.3390/ma12172823.   DOI
71 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.179.   DOI
72 Yu, Y. and Shen, H.-S. (2020a), "A comparison of nonlinear vibration and bending of hybrid CNTRC/metal laminated plates with positive and negative Poisson's ratios", Int. J. Mech. Sci., 183, 105790. https://doi.org/10.1016/j.ijmecsci.2020.105790.   DOI
73 Yu, Y. and Shen, H.-S. (2020b), "A comparison of nonlinear bending and vibration of hybrid metal/CNTRC laminated beams with positive and negative Poisson's ratios", Int. J. Struct. Stabil. Dyn., 20, 2043007. https://doi.org/10.1142/S021945542043007.5   DOI
74 Zhang, J., Zhu, X., Yang, X. and Zhang, W. (2019), "Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads", Int. J. Impact Eng., 134, 103383. https://doi.org/10.1016/j.ijimpeng.2019.103383.   DOI
75 Ren, X., Das, R., Tran, P., Ngo, T.D. and Xie, Y.M. (2018), "Auxetic metamaterials and structures: a review", Smart Mater. Struct., 27, 023001. https://doi.org/10.1088/1361-665X/aaa61c.   DOI
76 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/ anr.2019.7.1.051.   DOI
77 Kiani, Y. (2018), "NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates", Thin-Walled Struct., 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024.   DOI
78 Ma, W., Yang, C., Ma, D. and Zhong, J.L. (2019), "Low-velocity impact response of nanotube-reinforced composite sandwich curved panels", SADHANA-Academy Proc. Eng. Sci., 44, 227. https://doi.org/10.1007/s12046-019-1214-x.   DOI
79 Milton, G.W. (1992), "Composite materials with Poisson's ratios close to - 1", J. Mech. Phys. Solids., 40, 1105-1137. https://doi.org/10.1016/0022-5096(92)90063-8.   DOI
80 Shen, H.-S., Lin, F. and Xiang, Y. (2017a), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069.   DOI
81 Lakes, R.S. (2017), "Negative-Poisson's-ratio materials: Auxetic solids", Annu. Rev. Mater. Res., 47, 63-81. https://doi.org/10.1146/annurev-matsci-070616-124118.   DOI
82 Zhang, R., Yeh, H.L. and Yeh, H.Y. (1998), "A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites", J. Reinf. Plastics Compos., 17, 1651-1664. https://doi.org/10.1177/073168449801701806.   DOI
83 Zhao, Y.X., Liu, T. and Li, Z.M. (2018), "Nonlinear bending analysis of a 3D braided composite cylindrical panel subjected to transverse loads in thermal environments", Chinese J. Aeron., 31, 1716-1727. https://doi.org/10.1016/j.cja.2018.03.022.   DOI
84 Liang, Q., Yao, X., Wang, W., Liu, Y. and Wong, C.P. (2011), "A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials", ACS Nano, 5, 2392-2401. https://doi.org/10.1021/nn200181e.   DOI
85 Shen, H.-S., Xiang, Y. and Lin, F. (2017b), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin-Walled Struct., 118, 229-237. https://doi.org/10.1016/j.tws.2017.05.006.   DOI
86 Shen, H.-S., Xiang, Y. and Fan, Y. (2019a), "Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments", Nanotechnol. Rev., 8, 467-483. https://doi.org/ 10.1515/ntrev-2019-0042.   DOI
87 Shen, H.-S., Xiang, Y. and Reddy, J.N. (2019b), "Thermal postbuckling behavior of FG-GRC laminated cylindrical panels with temperature-dependent properties", Compos. Struct., 211, 433-442. https://doi.org/10.1016/j.compstruct.2018.12.023.   DOI
88 Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086.   DOI
89 Lal, A., Singh, B.N. and Kale, S., (2012), "Stochastic thermal post-buckling response of laminated composite cylindrical shell panel with system randomness", Int. J. Appl. Mech., 4, 1250009. https://doi.org/10.1142/S1758825112001385.   DOI
90 Lee, J.J., Oh, I.-K., Lee, I. and Yeom, C.H. (2002), "Thermal post-buckling behavior of patched laminated panels under uniform and non-uniform temperature distributions", Compos. Struct., 55, 137-145. https://doi.org/10.1016/S0263-8223(01)00139-8.   DOI
91 Li, C., Shen, H.-S. and Wang, H. (2019a), "Thermal post-buckling of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Int. J. Mech. Sci., 152, 289-297. https://doi.org/10.1016/j.ijmecsci.2019.01.002.   DOI
92 Fan, Y., Xiang, Y. and Shen, H.-S. (2020), "Temperature-dependent mechanical properties of graphene/Cu nanocomposites with in-plane negative Poisson's ratios", Research, 2020, 5618021. https://doi.org/10.34133/2020/5618021l.   DOI
93 Shen, H.-S., and Xiang, Y. (2019), "Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties", Meccanica, 54, 283-297. https://doi.org/10.1007/s11012-019-00945-0.   DOI
94 Shen, H.-S. and Xiang, Y. (2020), "Effect of negative Poisson's ratio on the axially compressed postbuckling behavior of FG-GRMMC laminated cylindrical panels on elastic foundations", Thin-Walled Struct., 157, 107090. https://doi.org/10.1016/j.tws.2020.107090.   DOI
95 Dehrouyeh-Semnani, A.M. and Jafarpour, S. (2019), "Nonlinear thermal stability of temperature-dependent metal matrix composite shallow arches with functionally graded fiber reinforcements", Int. J. Mech. Sci., 161, 105075. https://doi.org/10.1016/ j.ijmecsci.2019.105075.   DOI
96 Duc, N.D., Kim, S.-E., Tuan, N.D., Tran, P. and Khoa, N.D. (2017), "New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer", Aero. Sci. Tech., 70, 396-404. https://doi.org/10.1016/j.ast.2017.08.023.   DOI
97 Naseer, A., Ahmad, F., Aslam, M., Guan, B.H., Wan Harund, W.S., Muhamade, N., Razaf, M.R. and German, R.M. (2019), "A review of processing techniques for graphene-reinforced metal matrix composites", Mater. Manufact. Process., 34, 957-985. https://doi.org/ 10.1080/10426914.2019.1615080.   DOI