Browse > Article
http://dx.doi.org/10.12989/eas.2022.22.5.447

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT  

Bennai, Riadh (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef)
Mellal, Fatma (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef)
Nebab, Mokhtar (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef)
Fourn, Hocine (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Benadouda, Mourad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Atmane, Hassen Ait (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Earthquakes and Structures / v.22, no.5, 2022 , pp. 447-460 More about this Journal
Abstract
In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.
Keywords
dynamics responses advanced composite plates; quasi-3D theory; variables elastic foundations;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019a), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arabian J. Geosci., 12(24), 809. https://doi.org/10.1007/s12517-019-4871-5.   DOI
2 Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://doi.org/10.12989/gae.2020.22.5.415.   DOI
3 Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscipline Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/mmms-08-2017-0082   DOI
4 Rabia, B., Daouadji, T.H., Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. http://dx.doi.org/10.12989/eas.2019.16.5.601   DOI
5 Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Composite Structures, 113223. http://doi.org/10.1016/j.compstruct.2020.113223.   DOI
6 Tajeddini, V., Ohadi, A. and Sadighi, M. (2011), "Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation", J. Mech. Sci., 53(4), 300-308. https://doi.org/10.1016/j.ijmecsci.2011.01.011.   DOI
7 Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.   DOI
8 Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical Analysis of Functionally Graded Cylinders and Plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.   DOI
9 Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.   DOI
10 Xiang, S., Kang, G. and Liu, Y. (2014), "A nth-order shear deformation theory for natural frequency of the functionally graded plates on elastic foundations", Compos. Struct., 111, 224-231. https://doi.org/10.1016/j.compstruct.2014.01.004.   DOI
11 Du, J., Jin, X., Wang, J. and Xian, K. (2007), "Love wave propagation in functionally graded piezoelectric material layer", Ultrasonics, 46(1), 13-22. https://doi.org/10.1016/j.ultras.2006.09.004.   DOI
12 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
13 Ait Atmane, R., Mahmoudi, N. and Bennai, R., Ait Atmane, H., Tounsi, A. (2021), « Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., 39(1), 95-107.   DOI
14 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
15 Chandra, N., Raja, S. and Nagendra Gopal, K.V. (2014), "Vibro-acoustic response and sound transmission loss analysis of functionally graded plates", J. Sound Vib., 333(22), 5786-5802.https://doi.org/10.1016/j.jsv.2014.06.031.   DOI
16 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R., Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. http://dx.doi.org/10.12989/eas.2019.16.1.055   DOI
17 Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2016), "Analytical modeling of wave propagation in viscoelastic functionally graded carbon nanotubes reinforced piezoelectric microplate under electro-magnetic field", Proc. Institution Mech. Eng. Part N: J. Nanomater., Nanoeng. Nanosyst., 231(1), 17-33. https://doi.org/10.1177/1740349915614046.   DOI
18 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
19 Tan, P., Nguyen-Thanh, N., Rabczuk, T. and Zhou, K. (2018), "Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach", Compos. Struct., 198, 35-50. https://doi.org/10.1016/j.compstruct.2018.05.012.   DOI
20 Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005.   DOI
21 Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2(3), 407. https://doi.org/10.1007/s42452-020-2182-9.   DOI
22 Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699   DOI
23 Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluids Struct., 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.   DOI
24 Panjehpour, M., Eric Woo Kee Loh, Deepak, TJ. (2018), "Structural Insulated Panels: State-of-the-Art", Trends in civil Engineering and its architecture, 3(1) 336-340. https://doi.org/10.32474/tceia.2018.03.000151   DOI
25 Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H. A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.   DOI
26 Jahromi, H.N., Aghdam, M.M. and Fallah, A. (2013), "Free vibration analysis of Mindlin plates partially resting on Pasternak foundation", J. Mech. Sci., 75 1-7. https://doi.org/10.1016/j.ijmecsci.2013.06.001.   DOI
27 Aminipour, H. and Janghorban, M. (2017), "Wave propagation in anisotropic plates using trigonometric shear deformation theory", Mech. Adv. Mater. Struct., 24(13), 1135-1144. https://doi.org/10.1080/15376494.2016.1227500.   DOI
28 Aminipour, H., Janghorban, M. and Li, L. (2018), "A new model for wave propagation in functionally graded anisotropic doubly-curved shells", Compos. Struct., 190, 91-111. https://doi.org/10.1016/j.compstruct.2018.02.003.   DOI
29 Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.   DOI
30 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
31 Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Modelling. 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.   DOI
32 Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A., and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.   DOI
33 Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Communications, 79, 51-62. http://dx.doi.org/10.1016/j.mechrescom.2017.01.004.   DOI
34 Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. http://dx.doi.org/10.12989/eas.2016.10.6.1429.   DOI
35 Chakraborty, A. and Gopalakrishnan, S. (2004), "A higher-order spectral element for wave propagation analysis in functionally graded materials", Acta Mechanica, 172(1-2), 17-43. https://doi.org/10.1007/s00707-004-0158-2.   DOI
36 Matsunaga, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", J. Mech. Sci., 49(9), 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008.   DOI
37 Jedrysiak, J. and Kazmierczak-Sobinska, M. (2015), "On free vibrations of thin functionally graded plate bands resting on an elastic foundation", J. Theoretical Appl. Mech., 629.https://doi.org/10.15632/jtam-pl.53.3.629.   DOI
38 Kudela, P., Zak, A., Krawczuk, M. and Ostachowicz, W. (2007), "Modelling of wave propagation in composite plates using the time domain spectral element method", J. Sound Vib., 302(4-5), 728-745. https://doi.org/10.1016/j.jsv.2006.12.016.   DOI
39 Mantari, J.L. and Guedes Soares, C. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.   DOI
40 Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2016), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandwich Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425.   DOI
41 Najafi, F., Shojaeefard, M.H. and Saeidi Googarchin, H. (2016), "Nonlinear low-velocity impact response of functionally graded plate with nonlinear three-parameter elastic foundation in thermal field", Compos. Part B: Eng., 107, 123-140. https://doi.org/10.1016/j.compositesb.2016.09.070.   DOI
42 Cukanovic, D., Radakovic, A., Bogdanovic, G., Milanovic, M., Redzovic, H. and Dragovic, D. (2018), "New Shape Function for the Bending Analysis of Functionally Graded Plate", Materials (Basel), 11(12), 2381. https://doi.org/10.3390/ma11122381.   DOI
43 Yu, J., Wu, B. and He, C. (2010), "Guided thermoelastic waves in functionally graded plates with two relaxation times", J. Eng. Sci., 48(12), 1709-1720. https://doi.org/10.1016/j.ijengsci.2010.10.002.   DOI
44 Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019b), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.   DOI
45 Nami, M.R. and Janghorban, M. (2014), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Modern Phys. Lett. B, 28(03), 1450021. https://doi.org/10.1142/s0217984914500213.   DOI
46 Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradientbased surface piezoelectricity theory", European Phys. J. Plus, 132(11). https://doi.org/10.1140/epjp/i2017-11694-2.   DOI
47 Cinefra, M., Belouettar, S., Soave, M. and Carrera, E. (2010), "Variable kinematic models applied to free-vibration analysis of functionally graded material shells", European J. Mech. A/Solids, 29(6), 1078-1087. https://doi.org/10.1016/j.euromechsol.2010.06.001.   DOI
48 Ghahnavieh, S., Hosseini-Hashemi, S., Rajabi, K. and Ghahnavieh, S. (2018), "A higher-order nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory", European Phys. J. Plus, 133(12), 1-21. https://doi.org/10.1140/epjp/i2018-12338-9.   DOI
49 Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511   DOI
50 Dinh Duc, N. and Hong Cong, P. (2016), "Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations", J. Sandwich Struct. Mater., 20(2), 191-218. https://doi.org/10.1177/1099636216648488.   DOI
51 He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), "Active control of FGM plates with integrated piezoelectric sensors and actuators", J. Solids Struct., 38(9), 1641-1655.https://doi.org/10.1016/S0020-7683(00)00050-0.   DOI
52 Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.   DOI
53 Katariya, P.V. and Panda, S.K. (2019), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.   DOI
54 Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.   DOI
55 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI