• Title/Summary/Keyword: Elastic Behaviour

Search Result 306, Processing Time 0.024 seconds

Aeroelastic forces on yawed circular cylinders: quasi-steady modeling and aerodynamic instability

  • Carassale, Luigi;Freda, Andrea;Piccardo, Giuseppe
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.373-388
    • /
    • 2005
  • Quasi-steady approaches have been often adopted to model wind forces on moving cylinders in cross-flow and to study instability conditions of rigid cylinders supported by visco-elastic devices. Recently, much attention has been devoted to the experimental study of inclined and/or yawed circular cylinders detecting dynamical phenomena such as galloping-like instability, but, at the present state-of-the-art, no mathematical model is able to recognize or predict satisfactorily this behaviour. The present paper presents a generalization of the quasi-steady approach for the definition of the flow-induced forces on yawed and inclined circular cylinders. The proposed model is able to replicate experimental behaviour and to predict the galloping instability observed during a series of recent wind-tunnel tests.

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Experimental and numerical assessment of EBF structures with shear links

  • Caprili, Silvia;Mussini, Nicola;Salvatore, Walter
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.123-138
    • /
    • 2018
  • Eccentrically braced frames (EBF) represent an optimal structural solution for seismic prone areas, being able to provide high dissipative capacity and good elastic stiffness, to withstand strong seismic events without significant loss of bearing capacity and to avoid damage to non-structural elements in case of low and moderate earthquakes. The accurate knowledge of the cyclic behaviour of the dissipative links, characterizing the whole performance of EBFs, is required to optimize the structural properties and to refine the design techniques adopted for multi-storey buildings' analysis. Reliable numerical models for the links, at the same time requiring a limited computational effort, are then needed. The present work shows the results of a wide experimental test campaign executed on real-scale one storey/one bay frames with horizontal and vertical links, together with the elaboration of a simple semi-analytical model for the quick representation of the cyclic behaviour of shear links.

An effective proposal for strength evaluation of steel plates randomly corroded on both sides under uniaxial compression

  • Khedmati, Mohammad Reza;Nouri, Zorareh Hadj Mohammad Esmaeil;Roshanali, Mohammad Mahdi
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.183-205
    • /
    • 2011
  • This paper presents the results of an investigation into the post-buckling behaviour and ultimate strength of imperfect corroded steel plates used in ship and other marine-related structures. A series of elastic-plastic large deflection finite element analyses is performed on randomly corroded steel plates. The effects of general corrosion on both sides of the plates are introduced into the finite element models using a random thickness surface model. The effects on plate compressive strength as a result of parametric variation of the corroded surface geometry are evaluated. A proposal on the effective thickness is concluded in order to estimate the ultimate strength and explore the post-buckling behaviour of randomly corroded steel plates under uniaxial compression.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Higher-order Shear Deformable Analysis of Laminated Plates on Two-parameter Elastic Foundations (Two-parameter 탄성지반위에 놓인 고차전단변형 적층판의 해석)

  • Han, Sung-Cheon;Jang, Suk-Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • The main purpose of this paper is to present deflections of laminated composite plates on the two-parameter foundations. that is an elastic foundation with shear layer. This paper focuses on the deformation behaviour of anisotropic structures on elastic foundations. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported isotropic and orthotropic plates on elastic foundations are compared with those of Timoshenko and LUSAS program. The results show an excellent agreement for the isotropic and LUSAS program. The results show an excellent agreement for the isotropic and orthotropic plates on the elastic foundations. Numerical results for displacements are presented to show the effects of side-to-thickness ratio aspect ratio, material anisotropy and shear modulus of foundations.

  • PDF

Microcontacting behaviour of material with fractal rough surface (프랙탈 표면을 가진 공구와 재료의 마이크로 접촉거동해석)

  • Kim, Young-Suk;Hyun, Sang-Il
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.33-37
    • /
    • 2009
  • Finite-element methods are used to study non-adhesive, frictionless rough contact of elastic and plastic solids. Roughness on spherical surfaces is realized by self-affine fractal. True contact area between the rough surfaces and flat rigid surfaces increases with power law under external normal loads. The power exponent is sensitive to surface roughness as well as the curvature of spherical geometry. Surface contact pressures are analyzed and compared for the elastic and plastic solids. Distributions of local contact pressure are shown dependent on the surface roughness and the yield stress of plastic solids.

  • PDF

Aggregate shape influence on the fracture behaviour of concrete

  • Azevedo, N.Monteiro;Lemos, J.V.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.411-427
    • /
    • 2006
  • The Discrete Element Method, DEM, is increasingly used in fracture studies of non-homogeneous continuous media, such as rock and concrete. A 2D circular rigid DEM formulation, developed to model concrete, has been adopted. A procedure developed to generate aggregate particles with a given aspect ratio and shape is presented. The aggregate particles are modelled with macroparticles formed by a group of circular particles that behave as a rigid body. Uniaxial tensile and compression tests performed with circular and non-circular aggregates, with a given aspect ratio, have shown similar values of fracture toughness when adopting uniform strength and elastic properties for all the contacts. Non-circular aggregate assemblies are shown to have higher fracture toughness when different strength and elastic properties are set for the matrix and for the aggregate/matrix contacts.

Applicability of over-coring technique to loaded RC columns

  • Campione, Giuseppe;Minafo, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.181-197
    • /
    • 2014
  • Stress determination is a very important step in the assessment of the safety of existing reinforced concrete structures. In rock mechanic this goal is achieved with the over-coring technique. The main idea behind such a technique is to isolate a material sample from the stress field in the surrounding mass and monitor its re-equilibrium deformation response. If the materials remains elastic, and elastic properties are known, stresses may be obtained from the corresponding measured strains. The goal of this paper is to evaluate if the over-coring technique is applicable to reinforced concrete members. The results of an experimental investigation on the behaviour of compressed concrete columns subjected to the over-coring technique are presented. Considerations about the range of applicability of the technique are made by comparing the measured and the theoretical stresses. After that, results of failure tests on drilled specimens are presented and discussed. Furthermore, the response is compared with that of columns core-bored before the compressive test. Finally, comparisons with numerical analysis are shown.

A Study on the Elasto-Plasticity Behaviour of a Ship's Plate under Thrust According to Boundary Condition (압축력을 받는 선체판의 경계조건에 따른 탄소성거동에 관한 연구)

  • 고재용;박주신;박영현
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.153-158
    • /
    • 2003
  • Design of general steel structure had applied and achieve elastic design concept mainly so far. Because elastic design supposes that whole structure complies with elasticity formula as that achieve via allowable stress of material is concept that calculate stress distribution of construction about action external load and estimate load of when the maximum stress reaches equally with allowable stress that is established beforehand by maximum safety load of the structure. But, absence that compose actuality structure by deal with external load increase small success surrender and structure hardness falls and tell structure in limit state finally on the whole as showing complicated conduct by interference between these breakdown at buckling by compression. Examined closely about conduct of place since initial buckling through carbon vocal cords transformation finite element analysis series (ANSYS) that place mending condition supposes case that is boundary condition in this investigation.

  • PDF