DOI QR코드

DOI QR Code

Aggregate shape influence on the fracture behaviour of concrete

  • Azevedo, N.Monteiro (Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa) ;
  • Lemos, J.V. (LNEC)
  • Received : 2005.10.07
  • Accepted : 2006.06.20
  • Published : 2006.11.10

Abstract

The Discrete Element Method, DEM, is increasingly used in fracture studies of non-homogeneous continuous media, such as rock and concrete. A 2D circular rigid DEM formulation, developed to model concrete, has been adopted. A procedure developed to generate aggregate particles with a given aspect ratio and shape is presented. The aggregate particles are modelled with macroparticles formed by a group of circular particles that behave as a rigid body. Uniaxial tensile and compression tests performed with circular and non-circular aggregates, with a given aspect ratio, have shown similar values of fracture toughness when adopting uniform strength and elastic properties for all the contacts. Non-circular aggregate assemblies are shown to have higher fracture toughness when different strength and elastic properties are set for the matrix and for the aggregate/matrix contacts.

Keywords

References

  1. Bazant, Z. (1986), 'Mechanics of distributed cracking', Appl. Mech. Rev., ASME, 4(5), 675-705
  2. Bazant, Z., Tabbara, M., Kazemi, M. and Cabot, G (1990), 'Random particle model for the fracture of aggregate or fiber composites', J. Eng. Mech., ASCE, 116(8), 1686-1705 https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  3. Cundall, P. and Strack, O. (1979), 'A discrete numerical model for granular assemblies', Geotechnique, 29(1), 47-65 https://doi.org/10.1680/geot.1979.29.1.47
  4. Cundall, P. (1980), 'UDEC a generalized distinct element program for modelling jointed rock', Final Tech. Rep. Eur. Res. Office (US Army Contract DAJA37-79-C-0548); NTIS order No. AD-A087 610/2
  5. Cundall, PA and Hart, R.D. (1992), 'Numerical modelling of discontinua', Eng. Computations, 9, 101-113 https://doi.org/10.1108/eb023851
  6. Cusatis, P., Bazant, Z. and Cedolin, L. (2003), 'Confinement-shear lattice model for concrete damage in tension and compression: I. Theory', J. Eng. Mech., 129(12), 1439-1448 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)
  7. Hentz, S., Daudeville, L. and Donze, V. (2004), 'Identification and validation of a discrete element model for concrete', J. Eng. Mech., 130(6),709-719 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
  8. Herrmannn, H. and Roux, S. (1989), 'Modelization of fracture in disordered systems', in Statistical Models for the Fracture of Disordered Media (Eds. H. Herrmann and S. Roux)', 159-188, New York, North-Holland
  9. Hrennikoff, A. (1941), 'Solutions of problems of elasticity by the framework method', J. Appl. Mech., December
  10. Itasca (1995), PFC2D Particle Flow Code in 2 Dimensions (Version 1.1 ed.), Itasca Consulting Group, Inc
  11. Jensen, R.P., Bosscher, P., Plesha, M. and Edil, T. (1999), 'DEM simulation of granular media - structure interface: Effects of surface roughness and particle shape', Int. J. Numer. Anal. Meth. Geomech., 23, 531-547 https://doi.org/10.1002/(SICI)1096-9853(199905)23:6<531::AID-NAG980>3.0.CO;2-V
  12. Kotsovos, M. (1983), 'Effect of testing techniques on the post-ultimate behaviour of concrete on compression', Material and Structures, RILEM, 16(91), 3-12
  13. Meguro, K. and Hakuno, M. (1989), 'Fracture analysis of concrete structures by the modified distinct element method', Struct. Eng. / Earthq. Eng., 6(2), 283-294
  14. Monteiro Azevedo, N., May, I. and Lemos, V. (2003), 'Numerical simulations of plain concrete under shear loading conditions', In H. Konietzky (Ed.), Numerical Modeling in Micromechanics via Particle Methods, Balkema, 79-86
  15. Monteiro Azevedo, N. (2003), 'A rigid particle discrete element model for the fracture analysis of plain and reinforced concrete', PhD Thesis, Heriot-Watt University, Scotland
  16. Monteiro Azevedo, N. and Lemos, V. (2004), 'Generation of random particle assemblies for fracture studies of concrete', 1-50, LNEC
  17. Potyondy, D. and Cundall, P.A. (1996), 'Modeling rock using bonded assemblies of circular particles', Proc. 2nd North American Rock Mechanics Symposium, eds. Aubertin et al., 1937-1944
  18. Potyondy, D.O. and Cundall, P.A. (2004), 'A bonded-particle model for rock', Int. J Rock Mech. Min. Sci., 41, 1329-1364 https://doi.org/10.1016/j.ijrmms.2004.09.011
  19. Rokugo, K. (1989), 'Testing method to determine tensile softening curve and fracture energy of concrete', Fracture Toughness and Fracture Energy, Balkema, 153-163
  20. Sakaguchi, H. and Muhlhaus, H.-B. (1997), 'Mesh free modelling of failure and localization in brittle materials, in deformation and progressive failure in geomechanics', Proc. IS-Nagoya 97, Pergamon, Eds. A. Asaoka, T. Adachi and F. Oka, 15-21
  21. Schlangen, E. and Garboczi, E. (1996), 'New method for simulating fracture using an elastically uniform random geometry lattice', Int. J Engng Sci., 34(10), 1131-1144 https://doi.org/10.1016/0020-7225(96)00019-5
  22. Takada, S. and Hassani, N. (1996), 'Analysis of compression failure of reinforced concrete by the modified distinct element method', C.B. GD Manolis, DE Beskos (Ed.), Advances in Earthquake Engineering, Earthquake Resistant Engineering Structures. Compo Mech. Publications
  23. Underwood, P. (1983), Dynamic Relaxation, in Computational Methods for Transient Analysis, New Work:North-Holland, eds. T. Belytschko and T. Hughes, 246-265
  24. Vonk, R. (1993), 'A micromechanical investigation of softening of concrete loaded in compression', Heron, 38(3), 1-94
  25. Wang, Z., Kwan, A. and Chan, H. (1999), 'Mesoscopy study of concrete I: Generation of random aggregate structure and finite element mesh', Comput. Struct., 70, 533-544 https://doi.org/10.1016/S0045-7949(98)00177-1

Cited by

  1. High Strain Rate Splitting Tensile Tests of Concrete and Numerical Simulation by Mesoscale Particle Elements vol.26, pp.1, 2014, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000776
  2. Influence of aggregate deformation and contact behaviour on discrete particle modelling of fracture of concrete vol.75, pp.6, 2008, https://doi.org/10.1016/j.engfracmech.2007.06.008
  3. Quantification of coarse aggregate shape in concrete vol.8, pp.3, 2014, https://doi.org/10.1007/s11709-014-0266-6
  4. Simulating Tensile and Compressive Failure Process of Concrete with a User-defined Bonded-Particle Model vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0292-1
  5. A discrete particle model for reinforced concrete fracture analysis vol.36, pp.3, 2006, https://doi.org/10.12989/sem.2010.36.3.343
  6. Influence of particle packing on fracture properties of concrete vol.8, pp.6, 2011, https://doi.org/10.12989/cac.2011.8.6.677
  7. Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading vol.62, pp.1, 2017, https://doi.org/10.12989/sem.2017.62.1.001
  8. Effects of Coarse Aggregate Form, Angularity, and Surface Texture on Concrete Mechanical Performance vol.31, pp.10, 2019, https://doi.org/10.1061/(asce)mt.1943-5533.0002849
  9. Effect of medium coarse aggregate on fracture properties of ultra high strength concrete vol.77, pp.1, 2006, https://doi.org/10.12989/sem.2021.77.1.103