Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.6.829

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads  

Chinnapandi, Lenin Babu Mailan (ESchool of Mechanical Engineering, Vellore Institute of Technology)
Pitchaimani, Jeyaraj (Advanced Dynamics Lab, Department of Mechanical Engineering, National Institute of Technology Karnataka)
Eltaher, Mohamed A. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
Publication Information
Steel and Composite Structures / v.44, no.6, 2022 , pp. 829-843 More about this Journal
Abstract
This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.
Keywords
acoustics; buckling; finite element method; porous FGM beams; shear influence; vibration;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach", Europ. Phys. J. Plus, 135(2), 1-18. https://doi.org/10.1140/epjp/s13360-020-00176-3.   DOI
2 Kanakannavar, S. and Pitchaimani, J. (2021), "Thermal buckling of braided flax woven polylactic acid composites", J. Reinforce. Plastics Compos., 40(7-8), 261-272. https://doi.org/10.1177/0731684420957740.   DOI
3 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
4 Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment", Adv. Acoustic. Vib., 2019. https://doi.org/10.1155/2019/7986569.   DOI
5 Kang, Y.A. and Li, X.F. (2010), "Large deflections of a non-linear cantilever functionally graded beam", J. Reinforced Plastics Compos., 29(12), 1761-1774. https://doi.org/10.1177/0731684409103340.   DOI
6 Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media.
7 Pious, D., Jacob, J., George, N., Bhagat, V., Chacko, T. and Jeyaraj, P. (2020), "Vibro-acoustic behaviour of functionally graded graphene reinforced polymer nanocomposites", In AIP Conference Proceeding, AIP Publishing LLC. https://doi.org/10.1063/5.0004109.   DOI
8 Sepehry, N., Ehsani, M., Shamshirsaz, M. and Sadighi, M. (2021), "Modeling of vibro-acoustic modulation induced by non-linear contact in the Euler-Bernoulli beam using the Fourier spectral element", Amirkabir J. Mech. Eng., 53(6), https://doi.org/10.22060/MEJ.2021.18676.6875.   DOI
9 Yang, Y., Fenemore, C., Kingan, M.J. and Mace, B.R. (2021), "Analysis of the vibroacoustic characteristics of cross laminated timber panels using a wave and finite element method", J. Sound Vib., 494, 115842. https://doi.org/10.1016/j.jsv.2020.115842.   DOI
10 Khor, K.A. and Gu, Y.W. (2000), "Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings", Mater. Sci. Eng.: A, 277(1-2), 64-76. https://doi.org/10.1016/S0921-5093(99)00565-1.   DOI
11 Kumar, A., Gunasekaran, V. and Pitchaimani, J. (2020), "Acoustic response behavior of porous 3D graphene foam plate", Appl. Acoustic., 169, 107431. https://doi.org/10.1016/j.apacoust.2020.107431.   DOI
12 Munde, Y.S., Ingle, R.B. and Siva, I. (2019), "Vibration damping and acoustic characteristics of sisal fibre-reinforced polypropylene composite", Noise Vib. Worldwide, 50(1), 13-21. https://doi.org/10.1177/0957456518812784.   DOI
13 Pinnola, F.P., Vaccaro, M.S., Barretta, R. and de Sciarra, F.M. (2021). Random vibrations of stress-driven nonlocal beams with external damping", Meccanica, 56(6), 1329-1344. https://doi.org/10.1007/s11012-020-01181-7.   DOI
14 Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M. P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach", Thin-Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.   DOI
15 Robinson, M.T.A. and Adali, S. (2018), "Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation", Compos. Struct., 206, 95-103. https://doi.org/10.1016/j.compstruct.2018.07.046.   DOI
16 Choy, K.L. and Felix, E. (2000), "Functionally graded diamondlike carbon coatings on metallic substrates", Mater. Sci. Eng.: A, 278(1-2), 162-169. https://doi.org/10.1016/S0921-5093(99)00569-9.   DOI
17 Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Europ. J. Mech.-A/Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.   DOI
18 Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Europ. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.   DOI
19 Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.   DOI
20 Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7.   DOI
21 Esfahani, S.E., Kiani, Y., Komijani, M. and Eslami, M.R. (2014), "Vibration of a temperature-dependent thermally pre/postbuckled FGM beam over a nonlinear hardening elastic foundation", J. Appl. Mech., 81(1). https://doi.org/10.1115/1.4023975.   DOI
22 Fakher, M., Behdad, S. and Hosseini-Hashemi, S. (2020), "Vibration analysis of stress-driven nonlocal integral model of viscoelastic axially FG nanobeams", Europ. Phys. J. Plus, 135(11), 1-21. https://doi.org/10.1140/epjp/s13360-020-00923-6.   DOI
23 Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Vibro-acoustics response of an isotropic plate under nonuniform edge loading: An analytical investigation", Aeros. Sci. Technol., 105, 106052. https://doi.org/10.1016/j.ast.2020.106052.   DOI
24 George, N. and Jeyaraj, P. (2018), "Nonuniform heat effects on buckling of laminated composite beam: Experimental investigations", Int. J. Structuct. Stab. Dyn., 18(12), 1850153. https://doi.org/10.1142/S0219455418501535.   DOI
25 George, N., Jeyaraj, P. and Murigendrappa, S.M. (2016), "Buckling of non-uniformly heated isotropic beam: Experimental and theoretical investigations", Thin-Wall. Struct., 108, 245-255. https://doi.org/10.1016/j.tws.2016.08.019.   DOI
26 Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Analytical investigation on free vibration frequencies of polymer nano composite plate: Effect of graphene grading and non-uniform edge loading", Mater. Today Commun., 24, 100910. https://doi.org/10.1016/j.mtcomm.2020.100910.   DOI
27 Gilorkar, A., Murugan, R. and Pitchaimani, J. (2020), "Thermal buckling of sisal and glass hybrid woven composites: Experimental investigation", Compos. Part C, 2, 100012. https://doi.org/10.1016/j.jcomc.2020.100012.   DOI
28 Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021a), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.   DOI
29 Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. Journal of Mechanical Sciences, 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007   DOI
30 Fukui, Y. (1991), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", JSME Int. J., Vib. Control Eng., Eng. Ind., 34(1), 144-148. https://doi.org/10.1299/jsmec1988.34.144.   DOI
31 Gunasekaran, V., Pitchaimani, J., Chinnapandi, L.B.M. and Kumar, A. (2020), "Analytical solution for sound radiation characteristics of graphene nanocomposites plate: Effect of porosity and variable edge load", Int. J. Struct. Stab. Dyn., 21(06), 2150087. https://doi.org/10.1142/S0219455421500875.   DOI
32 Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.   DOI
33 Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.   DOI
34 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021a), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.   DOI
35 Akbas, S.D. (2015), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107.   DOI
36 Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.   DOI
37 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021b), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.   DOI
38 Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathem. Modelling, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.   DOI
39 Aria, A.I. and Friswell, M.I. (2019), "Computational hygrothermal vibration and buckling analysis of functionally graded sandwich microbeams", Compos. Part B: Eng., 165, 785-797. https://doi.org/10.1016/j.compositesb.2019.02.028.   DOI
40 Aragh, B.S., Hedayati, H., Farahani, E.B. and Hedayati, M. (2011), "A novel 2-D six-parameter power-law distribution for free vibration and vibrational displacements of two-dimensional functionally graded fiber-reinforced curved panels", Europ. J. Mech.-A/Solids, 30(6), 865-883. https://doi.org/10.1016/j.euromechsol.2011.05.002.   DOI
41 Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC press.
42 Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071 .   DOI
43 Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.   DOI
44 Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.   DOI
45 Alshabatat, N.T. and Naghshineh, K. (2014), "Optimization of natural frequencies and sound power of beams using functionally graded material", Adv. Acoustic. Vib., 2014. http://dx.doi.org/10.1155/2014/752361.   DOI
46 Arunkumar, M.P., Bhagat, V., Geng, Q., Ning, J. and Li, Y. (2021), "An analytical solution for vibro-acoustic characteristics of sandwich panel with 3DGrF core and FG-CNT reinforced polymer composite face sheets", Aeros. Sci. Technol., 107091. https://doi.org/10.1016/j.ast.2021.107091.   DOI
47 Berger, R., Kwon, P. and Dharan, C.K.H. (1994), "High speed centrifugal casting of metal matrix composites", In The Fifth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Maui Hawaii.
48 Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M. A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.   DOI
49 Deng, T., Sheng, X., Jeong, H. and Thompson, D.J. (2021), "A two-and-half dimensional finite element/boundary element model for predicting the vibro-acoustic behaviour of panels with poro-elastic media", J. Sound Vib., 505, 116147. https://doi.org/10.1016/j.jsv.2021.116147.   DOI
50 Zheng, H. and Cai, C. (2004), "Minimization of sound radiation from baffled beams through optimization of partial constrained layer damping treatment", Appl. Acoustics, 65(5), 501-520. https://doi.org/10.1016/j.apacoust.2003.11.008.   DOI
51 Yayli, M.O. (2020), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26(8), 2661-2671. https://doi.org/10.1007/s00542-020-04808-7.   DOI
52 Yayli, M.O. (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599.   DOI
53 Yayli, M.O. (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14 (2), 158-162. https://doi.org/1010.1049/mnl.2018.5428.   DOI
54 Yayli, M.O. (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734.   DOI
55 Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234, 3650-3666. https://doi.org/10.1177/0954406220916533   DOI
56 Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Machines, 50, 1012-1029. https://doi.org/10.1080/15397734.2020.1748053.   DOI
57 Sharma, N. and Panda, S.K. (2020), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Mathem. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.   DOI
58 Zghal, S., Ataoui, D. and Dammak, F. (2021), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institute of Mechanical Engineers, Part M: Journal of Engineering for the Marine Environment. https://doi.org/10.1177/14750902211047746.   DOI
59 Zhang, B., Li, Y. and Lu, W.Z. (2016), "Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress", J. Mech. Sci. Technol., 30(9), 4031-4042. https://doi.org/10.1007/s12206-016-0816-z.   DOI
60 Zhang, X.H., Han, J.C., Du, S.Y. and Wood, J.V. (2000), "Microstructure and mechanical properties of TiC-Ni functionally graded materials by simultaneous combustion synthesis and compaction", J. Mater. Sci., 35(8), 1925-1930. https://doi.org/10.1023/A:1004714402128.   DOI
61 Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385. https://doi.org/10.1177/1099636218784846.   DOI
62 Waddar, S., Pitchaimani, J., Doddamani, M. and Barbero, E. (2019), "Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads", Compos. Part B: Eng., 175, 107133. https://doi.org/10.1016/j.compositesb.2019.107133.   DOI
63 Wang, D., Geng, Q. and Li, Y. (2018), "Effect of static load on vibro-acoustic behaviour of clamped plates with geometric imperfections", J. Sound Vib., 432, 155-172. https://doi.org/10.1016/j.jsv.2018.06.019.   DOI
64 Yayli, M.O. (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube", Acta Physica Polonica A, 127(3), 678-683.   DOI
65 Yayli, M.O. (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11, 741-745. https://doi.org/10.1049/mnl.2016.0257.   DOI
66 Yayli, M.O. (2018a), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13 (7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181.   DOI
67 Yayli, M.O. (2018b), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206.   DOI
68 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.   DOI
69 Darvishgohari, H., Zarastvand, M., Talebitooti, R. and Shahbazi, R. (2021), "Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers", J. Sandw. Struct. Mater., 23(5), 1453-1480. https://doi.org/10.1177/1099636219896251.   DOI
70 Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. http://dx.doi.org/10.12989/sem.2016.59.2.343   DOI
71 Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021b), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.   DOI
72 Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 1-11. https://doi.org/10.1007/s00339-016-0324-0.   DOI