DOI QR코드

DOI QR Code

Experimental and numerical assessment of EBF structures with shear links

  • Caprili, Silvia (Department of Civil and Industrial Engineering, University of Pisa) ;
  • Mussini, Nicola (Department of Civil and Industrial Engineering, University of Pisa) ;
  • Salvatore, Walter (Department of Civil and Industrial Engineering, University of Pisa)
  • Received : 2017.05.05
  • Accepted : 2018.05.22
  • Published : 2018.07.25

Abstract

Eccentrically braced frames (EBF) represent an optimal structural solution for seismic prone areas, being able to provide high dissipative capacity and good elastic stiffness, to withstand strong seismic events without significant loss of bearing capacity and to avoid damage to non-structural elements in case of low and moderate earthquakes. The accurate knowledge of the cyclic behaviour of the dissipative links, characterizing the whole performance of EBFs, is required to optimize the structural properties and to refine the design techniques adopted for multi-storey buildings' analysis. Reliable numerical models for the links, at the same time requiring a limited computational effort, are then needed. The present work shows the results of a wide experimental test campaign executed on real-scale one storey/one bay frames with horizontal and vertical links, together with the elaboration of a simple semi-analytical model for the quick representation of the cyclic behaviour of shear links.

Keywords

References

  1. Ashtari, A. and Erfani, S. (2016), "An analytical model for shear links in eccentrically braced frames", Steel Compos. Struct., Int. J., 22(3), 627-645. https://doi.org/10.12989/scs.2016.22.3.627
  2. Badalassi, M., Braconi, A., Caprili, S. and Salvatore, W. (2013), "Influence of steel mechanical properties on EBF seismic behaviour", Bull. Earthq. Eng., 11, 2249-2285. https://doi.org/10.1007/s10518-013-9498-4
  3. Badalassi, M., Braconi, A., Caprili, S., Cajot, L.G., Degee, H., Gundel, M., Hjaij, M., Hoffmeister, B., Karamanos, S.A. Salvatore, W. and Somja, H. (2017), "Influence of variability of material mechanical properties on seismic performance of steel and steel-concrete composite structures", Bull. Earthq. Eng., 15(4), 1559-1607. https://doi.org/10.1007/s10518-016-0033-2
  4. Berman, J.W. and Bruneau, M. (2007), "Experimental and analytical investigation of tubular links for eccentrically braced frames", Eng. Struct., 29(8), 1929-1938. https://doi.org/10.1016/j.engstruct.2006.10.012
  5. Berman, J.W. and Bruneau, M. (2008), "Tubular links for eccentrically braced frames. I: Finite element parametric study", J. Struct. Eng., 134(5), 692-701. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(692)
  6. Bertero, V.V., Anderson, J.C. and Krawinkler, H. (1994), Performance of Steel Building Structures during the Northridge Earthquake, (Ed. E.E.R. Center), University of California, CA, USA.
  7. Bosco, M. and Rossi, P.P. (2009), "Seismic behaviour of eccentrically braced frames", Eng. Struct., 31(3), 664-674. https://doi.org/10.1016/j.engstruct.2008.11.002
  8. Bosco, M., Marino, E.M. and Rossi, P.P. (2015), "Modelling of steel link beams of short, intermediate or long length", Eng. Struct., 84, 406-418. https://doi.org/10.1016/j.engstruct.2014.12.003
  9. Bouwkamp, J., Vetr, M.G. and Ghamari, A. (2016), "An analytical model for inelastic cyclic response of eccentrically braced frame with vertical shear link (V-EBF)", Case Studies Struct. Eng., 6, 31-44. https://doi.org/10.1016/j.csse.2016.05.002
  10. Braconi, A., Caprili, S., Degee, H., Gundel, M., Hjaij, M., Hoffmeister, B., Karamanos, S.A., Rinaldi, V. and Salvatore, W. (2015), "Efficiency of Eurocode 8 design rules for steel and steel-concrete composite structures", J. Constr. Steel Res., 112, 108-129. https://doi.org/10.1016/j.jcsr.2015.04.021
  11. Bruneau, M., Uang, C.M. and Sabelli, S.E.R. (2011), Ductile Design of Steel Structures, McGraw-Hill.
  12. D'Aniello, M., Landolfo R, and Della Corte, G. (2012), "Overstrength of Shear Links in Eccentric Braces", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
  13. D.M 14/01/2008 (2008), Norme Tecniche sulle Costruzioni; Ministero delle Infrastrutture, Italia.
  14. Dimakogianni, D., Dougka, G. and Vayas, I. (2015), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2)", Eng. Struct., 90, 83-95. https://doi.org/10.1016/j.engstruct.2015.01.054
  15. ECCS45, Reccomended testing procedures for assessing the behaviour of structural elements under cyclic loads, in ECCS45; European Convention for constructional steelwork, Technical committee 1, TWG 1.3 - Seismic Design, No. 45.
  16. Engelhardt, M.D. and Popov, E.P. (1989a), "On design of eccentrically braced framess", Earthq. Spectra, 5(3), 495-511. https://doi.org/10.1193/1.1585537
  17. Engelhardt, M.D. and Popov, E.P. (1989b), "Behavior of long links in eccentrically braced frames", Earthquake Engineering Research Center, Report No. UCB/EERC-89/01; University of California, Berkeley, CA, USA.
  18. Eurocode 8 - EN 1998-1:2005 (2005), Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Action and Rules for Buildings; Brussels, Belgium.
  19. FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency, Washington, D.C., USA.
  20. Gilberson, M. (1969), "Two nonlinear beams with definitions of ductility", J. Struct. Eng., 137-157.
  21. Hjelmstad, K.D. and Lee, S.G. (1989), "Lateral buckling of beams in eccentrically-braced frames", J. Constr. Steel Res., 14(4), 251-272. https://doi.org/10.1016/0143-974X(89)90039-4
  22. Hjelmstad, K.D. and Popov, E.P. (1983), "Seismic behavior of active beam links in eccentrically braced fram", Report No. UBC/EERC-83/15; Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  23. Kasai, K. and Popov, E.P. (1986), "Cyclic web buckling control for shear link beams", J. Struct. Eng., 112(3), 505-523. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:3(505)
  24. Keith, D.H. and Egor, P.P. (1983), "Cyclic behavior and design of link beams", J. Struct. Eng., 109(10), 2387-2403. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2387)
  25. Lemaitre, J. and Chaboche, J.L. (1994), Mechanics of Solid Materials, Cambridge University Press.
  26. Lian, M., Su, M. and Guo, Y. (2015), "Seismic performance of eccentrically braced frames with high strength steel combination", Steel Compos. Struct., Int. J., 18(6), 1517-1539. https://doi.org/10.12989/scs.2015.18.6.1517
  27. Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376
  28. Manfredi, M., Morelli, F. and Salvatore, W. (2015), "An enhanced component based model for steel links in hybrid structures: Development, calibration and experimental validation", Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, June, pp. 3435-3450.
  29. Mastrandrea, L. and Piluso, V. (2009), "Plastic design of eccentrically braced frames, I: Moment-shear interaction", J. Constr. Steel Res., 65(5), 1007-1014. https://doi.org/10.1016/j.jcsr.2008.10.002
  30. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), OpenSees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center.
  31. Mazzolani, F.M., Della Corte, G. and D'Aniello, M. (2009), "Experimental analysis of steel dissipative bracing systems for seismic upgrading", J. Civil Eng. Manag., 15(1), 7-19. https://doi.org/10.3846/1392-3730.2009.15.7-19
  32. Mohammadi, R.K. and Sharghi, A.H. (2014), "On the optimum performance-based design of eccentrically braced frames", Steel Compos. Struct., Int. J., 16(5), 357-374. https://doi.org/10.12989/scs.2014.16.4.357
  33. Mroz, Z. (1969), "An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model", Acta Mechanica, 7(2), 199-212. https://doi.org/10.1007/BF01176668
  34. Nakashima, M. (1998), "Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake", Eng. Struct., 20(4-6), 271-281. https://doi.org/10.1016/S0141-0296(97)00019-9
  35. Nakashima, M. and Bruneau, M. (1995), Preliminary Reconnaissance Report of the 1995 Hyogoken-Nanbu Earthquake, (Ed. T.A.I.o. Japan).
  36. Okazaki, T. and Engelhardt, M.D. (2007), "Cyclic loading behavior of EBF links constructed of ASTM A992 steel", J. Constr. Steel Res., 63(6), 751-765. https://doi.org/10.1016/j.jcsr.2006.08.004
  37. Peter, D., Ahmad, M.I. and Ian, G.B. (2010), "Cyclic Behavior of Shear Links of Various Grades of Plate Steel", J. Struct. Eng., 136(4), 370-378. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000131
  38. Popov, E.P. (1983), "Recent research on eccentrically braced frames", Eng. Struct., 5(1), 3-9. https://doi.org/10.1016/0141-0296(83)90034-2
  39. Prinz, G.S. and Richards, P.W. (2009), "Eccentrically braced frame links with reduced web sections", J. Constr. Steel Res., 65(10-11), 1971-1978. https://doi.org/10.1016/j.jcsr.2009.04.017
  40. Qi, Y., Li, W. and Feng, N. (2017), "Seismic collapse probability of eccentrically braced steel frames", Steel Compos. Struct., Int. J., 24(1), 37-52. https://doi.org/10.12989/scs.2017.24.1.037
  41. Ramadan, T. and Ghobarah, A. (1995), "Analytical model for shear-link behavior", J. Struct. Eng., 121(11), 1574-1580. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1574)
  42. Richards, P.W. (2010), "Estimating the stiffness of eccentrically braced frames", Practice Period. Struct. Des. Constr., 15(1), 91-95. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000027
  43. Richards, P.W. and Uang, C.M. (2005), "Effect of flange widththickness ratio on eccentrically braced frames link cyclic rotation capacity", J. Struct. Eng., 131(10), 1546-1552. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1546)
  44. Ricles, J.M. and Popov, E.P. (1987), Dynamic Analysis of Seismically Resistant Eccentrically Braced Frames, UCB/EERC-87/07.
  45. Rides, J.M. and Popov, E.P. (1993), "Inelastic link element for EBF seismic analysis", J. Struct. Eng., 120(2), 441-463. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:2(441)
  46. Roeder, C.W. and Popov, E.P. (1978), "Eccentrically braced steel frames for earthquakes", J. Struct. Div., 104(3), 391-412.

Cited by

  1. Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links vol.37, pp.3, 2018, https://doi.org/10.12989/scs.2020.37.3.323
  2. Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links vol.37, pp.3, 2018, https://doi.org/10.12989/scs.2020.37.3.323
  3. Lateral force distribution in the inelastic state for seismic design of high‐strength steel framed‐tube structures with shear links vol.29, pp.17, 2020, https://doi.org/10.1002/tal.1801