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Microcontacting behaviour of material with fractal rough surface
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Abstract

Finite-element methods are used to study non-adhesive, frictionless rough contact of elastic and plastic solids.
Roughness on spherical surfaces is realized by self-affine fractal. True contact area between the rough surfaces and flat
rigid surfaces increases with power law under external normal loads. The power exponent is sensitive to surface
roughness as well as the curvature of spherical geometry. Surface contact pressures are analyzed and compared for the

elastic and plastic solids. Distributions of local contact pressure are shown dependent on the surface roughness and the
yield stress of plastic solids.

Keywords: Finite element method, Nano-contacts, Self-affine fractal surface.

1. Introduction characteristics. To address on the dependence on
materials properties, we used both elastic and

Contact analysis between two surfaces have . N .
plastic materials in the analysis.

been studied for the characterization of mechanical,
electrical, and fluidic devices in the wide range of
length scales [1]. As the size of devices can reach

2. Theoretical Background
down to nanometer length scale recently, the

contact analysis becomes more important in small 2.1 Self-affine Fractal Surface and Roughness
length scale because of the dominated surface Experimental measurements [8-10] on surface
effect over bulk effect. Numerous analytical and profile show the surface can be realized by self-
numerical studies have been performed to examine affine fractal surface [11] in small length scale.
how contact properties of surfaces are connected to Vertical height profiles ( 4 ) of self-affine surfaces
surface geometries in contact [2-7]. It is well show power scaling behavior as a function of the
known real surfaces have always roughness in horizontal length scale (7 ), where the power
small length scale, which can be ignored in exponent ¢ is given by

macroscopic scale. Besides the surface roughness ho 1. (1)

at the contact, nominal shapes of contact surfaces
were also investigated, which include flat,
spherical, and pyramidal shapes.

In this paper, we considered spherical contact
surfaces with roughness to examine how the A= <]Vh[2> /2 Q@)
contact properties are connected to the geometrical
parameters such as curvature and roughness. True
contact area vs. external load and contact pressure
distributions were mainly considered as contact

From the self-affine surface with height profile
h(x,y) at a point on x-y plane, the roughness A at
small length scale is represented by

where () is the spatial average over x-y plane [7].
In the case of nominally flat surfaces, true contact
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area under external normal load is shown mainly
dependent on the local roughness A.

2.2 True Contact Area for Rough Surfaces

Interfacial characteristics between two
surfaces can be determined by true contact area. In
small length scale, however, the true contact area is
significantly smaller than the nominal contact area
[2]. True contact area as a function of external load
has been investigated in numerous studies. True
contact area (¢) is defined by the ratio between
true contact area (A) over nominal contact area
(Ag). It is well know the true contact area is
represented as a power function of external load

(P) by
P

&0

In the equation, E’is effective Young’s modulus
defined by E' =E/1-v*) when E is Young’s
modulus and v is Poisson’s ratio and is the
power exponent. At small loads, the power
exponent is given by 2/3 for Hertzian spherical
contact with no roughness, and 1 (linear) for
nominally flat surface with roughness. The linear
curve implies the true contact area increases as the
external load to keep the average contact pressure
remains constant.

€)

3. Finite Element model and simulation

3.1 Modelling of Rough Surfaces
Successive random point algorithm [12] was
introduced to generate self-affine surfaces for
numerical models. One of typical self-affine
surfaces (fractal dimension H=0.5) is shown in
Figure 1 (a). Grid sizes on x-y plane varied from 64
to 256 to check the indenpendence of the analysis
on grid size. Small scale roughness  varied from
0 to 0.205 when grid size is defined by 1, and the
radius R of the spherical surfaces varied from
infinite (nominally flat) to 2.5L (L is the domain
size).

3.2 Finite Element Analysis
We introduced finite element method
(ABAQUS [13]) for the contact analysis. Typical
finite element models have 70,000 nodes and
350,000 elements approximately.
Four-node tetrahedral elements were used.
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Due to the high computational cost, dynamic
explicit method was used instead of standard
implicit method. In the calculations, we considered
the system size of L=128 mostly after the
consistency check. Roughness A of 0.205 and
radius R of 2.5L were also used in most
simulations. Figure 1 (b) shows a typical finite
element mesh for the simulations. Top body with
curvature and roughness is deformable and bottom
flat cube is perfectly rigid. We applied normal load
at the top face of the deformable body, and
dynamically relaxed the system to achieve
equilibrium state.

(a)

(b)]

i

Figure 1: (a) Self-affine fractal surface image
generated by the successive random midpoint
algorithm. (b) Geometry of a finite element model
in a deformable body (spherical top) with rough
surface on a flat rigid substrate.

Contact conditions were fixed by hard contact (no
penetration was allowed at the contact) without any
interfacial interaction. To remove the boundary
effects, we imposed periodic boundary conditions
at the side faces. Two surfaces were considered in
contact at each node if contact pressure was not
zero. True contact area ratio ¢ was given by the
ratio of the number of contact nodes over total
number of nodes at the plane.

4. Results and discussions
4.1 Contact Properties for Spherical Surfaces
In Figure 2, typical contact patterns of spherical
surfaces (R=2.5L) are shown for elastic and plastic



contacts when the contact area ratio ¢ is 0.1.
Figure 2 (a) is for elastic contact with no roughness
(A=0) and (b) is for elastic contact with roughness
(A=0.205). For the rough contact (b), the pattern is
complicated and many small contact clusters are
widely spread, whereas the smooth contact (a)
shows one circular area corresponds to ¢=0.1.

(a) (c)

Figure 2: Actual patterns of contact area ( =0.1)
obtained from (a) elastic smooth sphere (b) elastic
rough sphere, and (c) plastic (Cu) rough sphere.
Note the apparent differences on the contact cluster
shapes

On the other hand, Figure 2 (c) is for plastic
contact with roughness ( A =0.205). Its contact
clusters are not widely distributed like (b), the
contact pattern is still relatively complicated. We
find the roughness generates wide distribution of
normal load at the contact region, which may
reduce the peak contact pressure.

4.2 External Load vs. True Contact Area

Figure 3 shows the relation between true
contact area ratio (¢ ) vs. external normal load (P)
for various roughness values A and radii R. In the
plot, we added the analytic curve for smooth
spherical contact [2] and for nominally flat contact
with roughness [7] for comparisons.
From the power fitting with Eq. (3) on the
numerical results, the exponents r were obtained.
The power exponent of elastic spherical surfaces is
shown to vary from 0.67 to 0.90 as the roughness
increases from 0 to 0.205. For fixed roughness
A=0.205, the slope also shows strong dependence
on the curvature. It is noted true contact area ratio
depends on both geometrical parameters, the
roughness and the nominal shape of contact
surfaces.

In the same figure, we presented the result
(open squares) for plastic contacts surfaces. When
the plasticity is considered, the slope is nearly 20
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times higher. And the fitted exponent 7 is given by
0.83, which is apparently approaching to linear for
the case of nominally flat surface [15]. Immediate
plastic deformation at the contact region may
reduce the curvature effect of the spherical contact
surfaces.
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Figure 3: True contact area ratio ¢ vs. normalized
external pressure P/ E'. The fitted power exponent
evolves from 0.67 (sphere) to 1.0 (nominally flat)
as the roughness A increases.

4.3 Pressure Distributions of Elastic Contacts

Spatial distribution of local contact pressure
provides key information to determine how the
deformation may occur at the contact region by
plastic deformation, fractures and failures. We
investigated the pressure distribution as a function
of true contact area and roughness, and presented
in Figure 4 and Figure 5. Horizontal axis is for
normalized radial distance (r/rp) by effective radius
r{ =+ A/m) from the center of contact surface,
and vertical axis is for normalized contact pressure
(p/po) by external pressure py.

Figure 4 shows the contact pressure
distribution as a function of roughness A. As the
roughness  increases from 0 to 0.205, the peak
pressure inside the circular region drops from 1.5
to 0.5, and the pressure distribution however
becomes gradually wider to reach outside the
circular region (r/ro>1). This behavior is consistent
with the contact morphologies shown in Figure 2.
It may imply the increase of roughness spreads the



external load efficiently over wide range of area, so
that the peak contact pressure can be lowered.

In Figure 5, the contact pressure distribution of
rough spheres (A=0.205) is shown as a function of
contact area ratio, equivalent to external load). As
the contact area ¢ varies from 0.05 to 0.3, the
distribution curve approaches to the theoretical
prediction for smooth spherical contact. By
comparing it with Figure 4, the increase of contact
area (or high external load) can induce similar
effect on the distributions as the decrease of
roughness. We suspect the separate contact clusters
start to merge as the external load increases and the
roughness effect becomes gradually negligible.
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Figure 4: Radial distributions of contact pressure p.
The distribution of contact pressure p is relatively
wide at high roughness (A=0.205), while it is
mostly confined in the limited region (r/re<1) at
low roughness.
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Figure 5: Radial distributions of contact pressure at
different contact area. The pressure is more
confined inside (r/ry<1) as the true contact area
increases.

4.4 Pressure Distributions of Plastic Contacts
Plasticity effect on the contact pressure distribution
has been examined for the spherical rough contacts
(A=0.205, R=2.5L). Material property of Cu was
used in the finite element simulation, and the
contact pressure distribution is shown in Figure 6.
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Figure 6: Radial distribution of pressure for real
materials (Cu) with plasticity. It follows the
distribution of rough surface outside (r/ry>1)
whereas it approaches to the smooth sphere inside
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The distribution curve shows different behaviors at
two separate regions. Outside of the circular region
(r/re>1), it follows the elastic contact curve with
same roughness. However, inside of the circular
region (r /ry<l), it is close to the elastic contact
with no roughness (A=0). It should be noticed, for
the case of low yield stress (e.g., ¥ /E'~1/1100
. . 14

for Cu), plastic deformation at the contact
asperities may reduce the roughness effect.

5.

In this paper, we examined the dependence of
contact properties on two geometrical parameters
(curvature and roughness) of the spherical rough
surfaces using numerical analysis. True contact
area is obtained as power functions, and the fitted
power exponent is sensitive to the parameters.

From the analysis on surface contact pressures,
it is shown the peak contact pressure can drop by
surface roughness. Wide distribution of the external
pressure at the contact region may reduce the
plastic failures when two surfaces are in
mechanical contact.

In the present study, we neglected all
interactions between contacting surfaces. However,
for realistic simulations, interfacial forces such as
adhesions, repulsions, and frictions should be
considered especially in atomistic length scales
[16]. In our finite element models, we could
generate roughness at one surface only because
normal load was considered. However, to address
more practical contact phenomena such as frictions,
it is required to apply shear loads on two rough
surfaces. We are currently working on the
development of more general simulation
frameworks.

Conclusions
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