• Title/Summary/Keyword: Eigenvalue equation

Search Result 256, Processing Time 0.029 seconds

EIGENVALUE PROBLEMS FOR p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES

  • Guo, Mingzhou;Sun, Hong-Rui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.999-1011
    • /
    • 2009
  • In this paper, we are concerned with the following eigenvalue problems of m-point boundary value problem for p-Laplacian dynamic equation on time scales $(\varphi_p(u^{\Delta}(t)))^\nabla+{\lambda}h(t)f(u(t))=0,\;t\in(0,T)$, $u(0)=0,\varphi_p(u^{\Delta}(T))=\sum\limits_{i=1}^{m-2}a_i\varphi_p(u^{\Delta}(\xi_i))$, where $\varphi_p(u)=|u|^{p-2}$u, p > 1 and $\lambda$ > 0 is a real parameter. Under certain assumptions, some new results on existence of one or two positive solution and nonexistence are obtained for $\lambda$ evaluated in different intervals. Our work develop and improve many known results in the literature even for the continual case. In doing so the usual restriction that $f_0=lim_{u{\rightarrow}0}+f(u)/\varphi_p(u)$ and $f_\infty = lim_{u{\rightarrow}{\infty}}f(u)/\varphi_p({u})$ exist is removed. As an applications, an example is given to illustrate the main results obtained.

Development of an Effective Method for Extracting Eigenvalues of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 해석 기법 개발)

  • Kang, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.124-129
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn't take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

  • PDF

Development of an Improved NDIF Method for Efficiently Extracting Eigenvalues and Eigenmodes of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 및 고유모드 추출을 위한 개선된 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.960-966
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues and eigenmodes of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn's take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues and mode shapes can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

A Study for The Comparison of Structural Damage Detection Method Using Structural Dynamic Characteristic Parameters (구조 동특성 파라미터를 이용한 구조물 손상 탐색기법 비교 연구)

  • Choi, Byoung-Min;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.257-263
    • /
    • 2007
  • Detection of structural damage is an inverse problem in structural engineering. There are three main questions in the damage detection: existence, location and extent of the damage. In concept, the natural frequency and mode shapes of any structure must satisfy an eigenvalue problem. But, if a potential damage exists in a structure, an error resulting from the substitution of the refined analytical finite element model and measured modal data into the structural eigenvalue equation will occur, which is called the residual modal forces, and can be used as an indicator of potential damage in a structure. In this study, a useful damage detection method is proposed and compared with other two methods. Two degree-of-freedom system and Cantilever beam are used to demonstrate the approach. And the results of three introduced method are compared.

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

SKEW-SYMMETRIC SOLVENT FOR SOLVING A POLYNOMIAL EIGENVALUE PROBLEM

  • Han, Yin-Huan;Kim, Hyun-Min
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.275-285
    • /
    • 2013
  • In this paper a nonlinear matrix equation is considered which has the form $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_{m-1}X+A_m=0$$ where X is an $n{\times}n$ unknown real matrix and $A_m$, $A_{m-1}$, ${\cdots}$, $A_0$ are $n{\times}n$ matrices with real elements. Newtons method is applied to find the skew-symmetric solvent of the matrix polynomial P(X). We also suggest an algorithm which converges the skew-symmetric solvent even if the Fr$\acute{e}$echet derivative of P(X) is singular.

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

  • Byun, Wan-Il;Kim, Seung-Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The IPSAP which is a finite element analysis program has been developed for high parallel performance computing. This program consists of various analysis modules - stress, vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shiftinvert transformation is used for solving eigenvalue problems in the vibration module. And the multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to factorization and triangular system solving phases in this block Lanczos iteration routine. In this study, the performance enhancement procedures of the IPSAP are composed of the following stages: 1) communication volume minimization of the factorization phase by modifying parallel matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse of the frontal matrix and the LCM (least common multiple) concept.

  • PDF

Analysis of Multiple Step-Index Waveguide by the WKB Approximation (WKB 근사를 이용한 다중 계단형 광도파로의 해석)

  • Seo, Jeong-Hun;Lee, Se-Ho;Lee, Byeong-Gwon;Kim, Chang-Min
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • The eigenvalue equations of multiple waveguides with step-index profile are derived by using the WKB theory. Phase changes unique to step-index discontinuity areintroduced when applying the WKB connection formula to turning points. The transfer matrix method is employed for the analysis of multiple structure and the derived eigenvalue equation are represented in the recursive form. The results by the WKB are compared with those by the FEM for a three-waveguide coupler.

  • PDF

Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse

  • Abbas, Ibrahim A.;Alzahrani, Faris S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.791-803
    • /
    • 2016
  • In this article, the problem of a two-dimensional thermoelastic half-space are studied using mathematical methods under the purview of the generalized thermoelastic theory with one relaxation time is studied. The surface of the half-space is taken to be thermally insulated and traction free. Accordingly, the variations of physical quantities due to by laser pulse given by the heat input. The nonhomogeneous governing equations have been written in the form of a vector-matrix differential equation, which is then solved by the eigenvalue approach. The analytical solutions are obtained for the temperature, the components of displacement and stresses. The resulting quantities are depicted graphically for different values of thermal relaxation time. The result provides a motivation to investigate the effect of the thermal relaxation time on the physical quantities.