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EIGENVALUE PROBLEMS FOR p-LAPLACIAN DYNAMIC
EQUATIONS ON TIME SCALES

Mingzhou Guo and Hong-Rui Sun

Abstract. In this paper, we are concerned with the following eigenvalue
problems of m-point boundary value problem for p-Laplacian dynamic
equation on time scales

�
ϕp(u∆(t))

�∇
+ λh(t)f(u(t)) = 0, t ∈ (0, T ),

u(0) = 0, ϕp

�
u∆(T )

�
=

m−2X
i=1

aiϕp

�
u∆(ξi)

�
,

where ϕp(u) = |u|p−2u, p > 1 and λ > 0 is a real parameter. Under
certain assumptions, some new results on existence of one or two posi-
tive solution and nonexistence are obtained for λ evaluated in different
intervals. Our work develop and improve many known results in the
literature even for the continual case. In doing so the usual restriction
that f0 = limu→0+ f(u)/ϕp(u) and f∞ = limu→∞ f(u)/ϕp(u) exist is
removed. As an applications, an example is given to illustrate the main
results obtained.

1. Introduction

The study of dynamic equations on time scales goes back to its founder
Stefan Hilger [10], and is a new area of still fairly theoretical exploration in
mathematics. Motivating the subject is the notion that dynamic equations
on time scales can build bridges between continuous and discrete mathematics.
Further, the study of time scales has led to several important applications, e.g.,
in the study of insect population models, phytoremediation of metals, wound
healing, economic, and epidemic models [4, 6, 11, 14, 19]. Throughout this
work we assume a working knowledge of time scales and time scales notation,
where any nonempty closed subset of R can serve as a time scale T, see Hilger
[10], Bohner and Peterson [5, 6].
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Very recently, there is an increasing attention paid to question of positive
solution for second order boundary value problems on time scales [2, 6, 7, 8,
12, 15, 16]. But very little work has been done to the existence of positive
solutions for p-Laplacian boundary value problem on time scales [3, 17, 18].
In particular, we would like to mention some results of Anderson, Avery, and
Henderson [3], Sun and Li [18], Agarwal and Lü [1], which motivate us to
consider our problem.

For convenience, throughout this paper we denote ϕp(u) as the p-Laplacian
operator, i.e., ϕp(u) = |u|p−2

u for p > 1 with (ϕp)−1 = ϕq, where 1/p+1/q = 1.
In [3], Anderson, Avery, and Henderson considered the following problem

(
ϕp

(
u∆(t)

))∇
+ c(t)f(u(t)) = 0, t ∈ (a, b),

u(a)−B0(u∆(ν)) = 0, u∆(b) = 0,

where ν ∈ (a, b), f ∈ Cld ([0,∞), [0,∞)) , c ∈ Cld ((a, b), [0,∞)) and Kmx ≤
B0(x) ≤ KMx for some positive constants Km, KM . They established the
existence result of at least one positive solution by a fixed point theorem of
cone expansion and compression of functional type.

In [18], Sun and Li considered the existence of at least twin or triple positive
solutions to the following p-Laplacian m-point boundary value problem

(
ϕp

(
u∆(t)

))∇
+ a(t)f(t, u(t)) = 0, t ∈ (0, T ),

u(0) = 0, ϕp

(
u∆(T )

)
=

m−2∑

i=1

aiϕp

(
u∆(ξi)

)
.

The main tools used in [18] are fixed point theorems in cones.
In [1], Agarwal and Lü considered the following problem

(ϕp (u′(t)))′ + λF (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

where α(t)f(u) ≤ F (t, u) ≤ β(t)f(u) for t ∈ (0, 1) and u ∈ (0,∞). They ob-
tained series results of the existence and nonexistence of positive solution. It is
noted that in the paper [1], the authors assumed that f0 = limu→0+ f(u)/ϕp(u)
and f∞ = limx→∞ f(u)/ϕp(u) exist. However, there is little work has been
done to the eigenvalue problem of multi-point boundary value problems for
p-Laplacian dynamic equation on time scales.

In this paper we consider the eigenvalue problem of m-point boundary value
problem for the one-dimensional p-Laplacian dynamic equation on time scales

(1.1)
(
ϕp(u∆(t))

)∇
+ λh(t)f(u(t)) = 0, t ∈ (0, T ),

(1.2) u(0) = 0, ϕp

(
u∆(T )

)
=

m−2∑

i=1

aiϕp

(
u∆(ξi)

)
.
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Under certain assumptions, results on existence of one or two positive so-
lution and nonexistence are obtained for λ evaluated in different intervals.
In doing so the usual restriction that f0 = limu→0+ f(u)/ϕp(u) and f∞ =
limx→∞ f(u)/ϕp(u) exist is removed. The results are even new for the special
cases of difference equations and differential equations, as well as in the general
time scale setting.

The rest of this paper is organized as follows. In Section 2, we shall provide
some preliminaries. For convenience, we also state the Krasnosel’skii’s fixed
point theorem in a cone. In Section 3, we characterize the value of λ so that
(1.1), (1.2) has a positive solution. Section 4 is due to develop existence criteria
of single and twin positive solutions for any λ in the interval which we have
given in Section 2. In the last section, we will consider the conditions of the
nonexistence of the positive solution. An example is also given to illustrate the
main results.

For the sake of convenience, we list the following hypotheses:
(H1) λ > 0 is a parameter, h : (0, T )→ [0,∞) is ld-continuous such that

h(t0) > 0 for at least one t0 ∈ [0, T ) and f : [0,∞)→(0,∞) is continu-
ous;

(H2) ai ≥ 0 for i = 1, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < ρ(T ) and
d = 1−∑m−2

i=1 ai > 0.

2. Preliminaries

Let the Banach space B = Cld[0, T ] (see [2]) be endowed with the norm
‖u‖ = supt∈[0,T ] |u(t)| , and choose the cone P ⊂ B defined by

P =
{

u ∈ B : u(t) ≥ 0 for t ∈ [0, T ] and
u∆∇(t) ≤ 0, u∆(t) ≥ 0 for t ∈ (0, T ), u(0) = 0

}
.

Clearly, by
∑m−2

i=1 ai < 1, we can obtain ‖u‖ = u(T ) for u ∈ P . Define the
operator Aλ : P → B by

Aλu(t) =
∫ t

0

ϕq

(
−
∫ s

0

λa(τ)f(u(τ))∇τ + d

∫ T

0

λa(τ)f(u(τ))∇τ

−d

m−2∑

i=1

ai

∫ ξi

0

λa(τ)f(u(τ))∇τ

)
∆s.(2.1)

for 0 ≤ t ≤ T.
Now we list a lemma which is needed later.

Lemma 2.1. [18, Lemma 2.6] Assume g : R→ R is continuous, g : T→ R is
delta differentiable on Tκ, and f : R → R is continuous differentiable. Then
there exists c in the real interval [ρ(t), t] with

(f ◦ g)∇(t) = f ′(g(c))g∇(t).
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By the definition of Aλ, the monotonicity of ϕq(x) and Lemma 2.1, it is
easy to see that for each u ∈ P, Aλu ∈ P and satisfies (1.2). In addition, since(
ϕp

(
u∆(t)

))∇ = −λh(t)f(u(t)) < 0, and ϕp

(
u∆(T )

)
=
∑m−2

i=1 aiϕp

(
u∆(ξi)

)
,

then Aλu(T ) is the maximum value of Aλu(t). Similar as the proof of Lemma
2.5 in [18], we can easily get that Aλ : P → P is completely continuous. And
from [18, Lemma 2.6], for u ∈ P , we have u(t) ≥ t

T ‖u‖, t ∈ [0, T ]. Thus, each
fixed point of the operator Aλ in P is a positive solution of (1.1), (1.2).

In order to prove our main result, the following fixed point theorem is crucial.

Lemma 2.2 ([9, 13]). Let P be a cone in a Banach space X. Assume Ω1, Ω2

are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. If A : P ∩ (Ω2\Ω1) → P is a
completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖ , ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ , ∀x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖ ,∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖ , ∀x ∈ P ∩ ∂Ω2 .

Then A has a fixed point in P ∩ (Ω2\Ω1).

3. Characterization of eigenvalues

In this section, we shall provide conditions under which the set of eigenvalues
E contains/is an interval. To begin, we shall define some important constants

(3.1) C1 =
∫ T

0

ϕq

(
d

∫ T

0

h(τ)∇τ

)
∆s,

(3.2) C2 =
ξm−2

T

∫ T

ξm−2

ϕq

(∫ T

s

h(τ)∇τ

)
∆s,

and denote

E = {λ > 0 : (1.1), (1.2) has a positive solution} .

Theorem 3.1. Assume (H1), (H2) hold, then there exists c > 0, such that the
interval (0, c] ⊆ E.

Proof. Let r > 0 be given and denote P r = {u ∈ P : ‖u‖ ≤ r}. Define

(3.3) c = ϕp (r/C1) /M,

where M = supu∈[0,r] f(u), C1 is defined in (3.1).
Let λ ∈ (0, c], we shall prove that Aλ maps P r into P r. For u ∈ P r, Aλ(u) ∈

P . Thus, it remains to check that ‖Aλu‖ ≤ r. Using (3.3) we get

‖Aλu‖ = sup
t∈[0,T ]

[∫ t

0

ϕq

(
−
∫ s

0

λh(τ)f(u(τ))∇τ + d

∫ T

0

λh(τ)f(u(τ))∇τ

−d

m−2∑

i=1

ai

∫ ξi

0

λh(τ)f(u(τ))∇τ

)
∆s

]
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≤
∫ T

0

ϕq

(
d

∫ T

0

λh(τ)f(u(τ))∇τ

)
∆s

≤ ϕq(λM)
∫ T

0

ϕq

(
d

∫ T

0

h(τ)∇τ

)
∆s

= ϕq(λM)C1 ≤ ϕq(cM)C1 = r.

Hence, Aλ(P r) ⊂ P r, Leray-Schauder fixed point theorem guarantee that Aλ

has a fixed point in P r. Obviously, this fixed point is also a positive solution
of (1.1), (1.2), and therefore λ is an eigenvalue of (1.1), (1.2). Since λ ∈ (0, c]
is arbitrary, it follows that the interval (0, c] ⊆ E. �

Theorem 3.2. Suppose (H1), (H2) hold, and assume that f(u) is nondecreas-
ing in (0,∞). If λ0 ∈ E, then for λ ∈ (0, λ0), we have λ ∈ E.

Proof. Suppose that u0 is a positive solution for the problem (1.1), (1.2) for
λ = λ0. Let

(3.4) Pu0 = {u ∈ P : u(t) ≤ u0(t), t ∈ [0, T ]}.

For any u ∈ Pu0 , λ ∈ (0, λ0), by (H1), (H2) and the monotonicity of f , we have

Aλu(t) ≤ Aλ0u0(t) = u0(t) for t ∈ [0, T ] .

Hence Aλ(Pu0) ⊆ Pu0 . By Leray-Schauder fixed point theorem, Aλ has a fixed
point in Pu0 , and this fixed point is a positive solution of (1.1), (1.2), thus λ
is an eigenvalue of (1.1), (1.2). �

Theorem 3.3. Suppose (H1), (H2), and assume f(u) is nondecreasing in
(0,∞), λ is an eigenvalue and u is the corresponding eigenfunction of (1.1),
(1.2), then

(3.5)
ϕp (l/C1)

f(l)
≤ λ ≤ ϕp (l/C2)

f(lξm−2/T )
,

where l = ‖u‖ .

Proof. Observe that

l = u(T ) = Aλu(T ) ≤
∫ T

0

ϕq

(
d

∫ T

0

λh(τ)f(u(τ))∇τ

)
∆s ≤ ϕq (λf(l))C1,

hence we have λ ≥ ϕp(l/C1)/f(l).
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Since u(t) ≥ t
T ‖u‖ ≥ ξm−2l

T , t ∈ [ξm−2, T ] , then in view of the monotonicity
of f , we have

l ≥ u(ξm−2) = Aλu(ξm−2) ≥ ξm−2

T
Aλu(T )

≥ ξm−2

T

[∫ T

0

ϕq

(
−
∫ s

0

λh(τ)f(u(τ))∇τ + d

∫ T

0

λh(τ)f(u(τ))∇τ

−d

m−2∑

i=1

ai

∫ T

0

λh(τ)f(u(τ))∇τ

)
∆s

]

=
ξm−2

T

∫ T

0

ϕq

(∫ T

s

λh(τ)f(u(τ))∇τ

)
∆s

≥ ξm−2

T

∫ T

ξm−2

ϕq

(∫ T

s

λh(τ)f(u(τ))∇τ

)
∆s

≥ ϕq (λf (ξm−2l/T )) C2,

thus λ ≤ ϕp(l/C2)/f(ξm−2l/T ). �

4. Eigenvalue intervals

In this section, we shall apply Lemma 2.2 to derive explicit eigenvalue in-
tervals, and also give sufficient conditions that the problem (1.1), (1.2) has at
least one or two positive solutions. For convenience, we introduce

F0 = lim supu→0+
f(u)
ϕp(u)

, f0 = lim infu→0+
f(u)
ϕp(u)

;

F∞ = lim supu→+∞
f(u)
ϕp(u)

, f∞ = lim infu→+∞
f(u)
ϕp(u)

.

Theorem 4.1. Suppose (H1), (H2) hold. Then for each

(4.1) (f∞)−1
ϕq (ξm−2C2/T ) < λ < (F0)

−1
ϕq(C1),

the boundary value problem (1.1), (1.2) has at least one positive solution. Here
we impose (f∞)−1

ϕq (ξm−2C2/T ) = 0 if f∞ = ∞ and (F0)
−1

ϕq(C1) = ∞ if
F0 = 0.

Proof. Let λ satisfy (4.1) and ε > 0 be such that

(4.2) (f∞ − ε)−1
ϕq (ξm−2C2/T ) ≤ λ ≤ (F0 + ε)−1

ϕq(C1).

By the definition of F0, we see that there exists r1 > 0 such that

(4.3) f(u) ≤ (F0 + ε)ϕp(u), 0 < u ≤ r1.
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So, if u ∈ ∂Pr1 , then by (4.3) and (4.2) we have

‖Aλu‖ = Aλu(T ) ≤
∫ T

0

ϕq

(
d

∫ T

0

λh(τ)f(u(τ))∇τ

)
∆s

≤ ϕq (λ(F0 + ε)) C1 ‖u‖ ≤ ‖u‖ .

Hence if we let Ω1 = {u ∈ B : ‖u‖ < r1} , then

(4.4) ‖Aλu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

Let r3 > 0 be such that

(4.5) f(u) ≥ (f∞ − ε) ϕp(u) for u ≥ r3.

If u ∈ B with ‖u‖ = r2 := max{2r1, T r3/ξm−2}. Then in view of (4.5) we have

‖Aλu‖ ≥ Aλu(ξm−2) ≥ ξm−2

T
Aλu(T )

≥ ξm−2

T

∫ T

0

ϕq

(∫ T

s

λh(τ)f(u(τ))∇τ

)
∆s

≥ ξm−2

T

∫ T

ξm−2

ϕq

(∫ T

s

λh(τ)f(u(τ))∇τ

)
∆s

≥ ξm−2

T

∫ T

ξm−2

ϕq

(∫ T

s

λh(τ) (f∞ − ε)ϕp(u(τ))∇τ

)
∆s

≥ C2ϕq(λ (f∞ − ε))
ξm−2

T
‖u‖ ≥ ‖u‖ .

Thus if we set Ω2 = {u ∈ B : ‖u‖ < r2} , then

(4.6) ‖Aλu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Now, (4.4), (4.6) and Lemma 2.2 guarantee that Aλ has a fixed point u ∈
P ∩ (Ω2\Ω1) with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution of (1.1),
(1.2). �

Theorem 4.2. Assume (H1), (H2) hold. Then for each

(4.7) (f0)
−1

ϕq (ξm−2C2/T ) < λ < (F∞)−1
ϕq(C1),

the problem (1.1), (1.2) has at least one positive solution.

Proof. Let λ satisfy (4.7) and ε > 0, such that

(4.8) (f0 − ε)−1
ϕq (ξm−2C2/T ) ≤ λ ≤ (F∞ + ε)−1

ϕq(C1).

From the definition of f0, we see that there exists r1 > 0 such that

f(u) ≥ (f0 − ε)ϕp(u) for 0 < u ≤ r1.
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Further, if u ∈ P with ‖u‖ = r1, then u(t) ≥ ξm−2
T ‖u‖ , t ∈ [ξm−2, T ], and

similar to the second part of Theorem 4.1, we can obtain that ‖Aλu‖ ≥ ‖u‖ .
Thus, if we let Ω1 = {u ∈ B : ‖u‖ < r1} , then

(4.9) ‖Aλu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1.

Next, we may choose R2 > 0 such that

(4.10) f(u) ≤ (F∞ + ε)ϕp(u), u ≥ R2.

Here there are two cases to consider, namely, where f is bounded and f is
unbounded .

Case 1. Suppose f is bounded, then there exists some M > 0, such that
f(u) ≤ M, u ∈ (0,∞) . We define r3 = max{2r1, ϕq(λM)C1}, and u ∈ P be
such that ‖u‖ = r3, then

‖Aλu‖ = Aλu(T ) ≤
∫ T

0

ϕq

(
d

∫ T

0

λh(τ)f(u(τ))∇τ

)
∆s

≤ ϕq(λM)C1 ≤ r3 = ‖u‖ .

Hence,

(4.11) ‖Aλu‖ ≤ ‖u‖ for u ∈ ∂Pr3 .

Case 2. Suppose f is unbounded, then there exists r4 > max{2r1, R2} such
that

(4.12) f(u) ≤ f(r4), 0 < u ≤ r4.

Let u ∈ P be such that ‖u‖ = r4, then by (4.8), we have

‖Aλu‖ = Aλu(T ) ≤
∫ T

0

ϕq

(
d

∫ T

0

λh(τ)f(u(τ))∇τ

)
∆s

≤ ϕq(λ (F∞ + ε))C1 ‖u‖ ≤ ‖u‖ .

Thus, (4.11) is also true.
In both Case 1 and Case 2, if we set Ω2 = {u ∈ B : ‖u‖ < r2 = max{r3, r4}} ,

then (4.10) hold for u ∈ P
⋂

∂Ω2.
Now that we have obtained (4.9) and (4.11), it follows from Lemma 2.2 that

Aλ has a fixed point u ∈ P ∩ (Ω2\Ω1), and r1 ≤ ‖u‖ ≤ r2. It is clear that u is
a positive solution of (1.1), (1.2). �

In the rest of this section, we consider the existence of two positive solutions
of (1.1), (1.2). First, we give a lemma.

Lemma 4.1. Suppose (H1), (H2) hold. In addition, assume there exist r2 >
r1 > 0, such that

(4.13) max
0≤u≤r1

f(u) ≤ ϕp (r1/C1) /λ,

(4.14) min
ξm−2r2/T≤u≤r2

f(u) ≥ ϕp (r2/C2) /λ.
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Then, (1.1), (1.2) has a solution u ∈ P with r1 ≤ ‖u‖ ≤ r2.

Proof. The proof of Lemma 4.3 is similar to that of Theorem 4.2, we omit it
here. �

For the remainder of the paper, we will need the following condition:
(H3) supr>0 minu∈(ξm−2r/T,r) f(u) > 0.
Let

(4.15) λ1 = sup
r>0

ϕp (r/C1)
max0≤u≤r f(u)

,

(4.16) λ2 = inf
r>0

ϕp (r/C2)
minξm−2r/T≤u≤r f(u)

.

In view of (H1) and (H3), we can easily obtain that 0 < λ1 ≤ ∞ and 0 ≤ λ2 <
∞.

Theorem 4.3. Suppose (H1)-(H3) hold, if f0 = ∞ and f∞ = ∞, then the
problem (1.1), (1.2) has at least two positive solutions for each λ ∈ (0, λ1) .

Proof. Define

a(r) =
ϕp (r/C1)

max0≤u≤r f(u)
, r > 0,

then by (H1), f0 = ∞ and f∞ = ∞, we have that a(r) : (0,∞) → (0,∞) is
continuous and

lim
r→0

a(r) = lim
r→∞

a(r) = 0.

By (4.15), there exists r0 ∈ (0,∞) , such that a(r0) = supr>0 a(r) = λ1, then
for λ ∈ (0, λ1), there exist constants c1, c2 (0 < c1 < r0 < c2 < ∞) with
a(c1) = a(c2) = λ. Thus

(4.17) f(u) ≤ ϕp(c1/C1)/λ for u ∈ [0, c1] ,

(4.18) f(u) ≤ ϕp(c2/C1)/λ for u ∈ [0, c2] .

On the other hand, applying the conditions f0 = ∞ and f∞ = ∞, there exist
constants d1, d2 (0 < d1 < c1 < r0 < c2 < d2 < ∞), with

(4.19) f(u)/ϕp(u) ≥ λ−1ϕq (ξm−2C2/T ) for u ∈ (0, d1) ∪ (ξm−2d2/T,∞) ,

then

(4.20) min
ξm−2d1/T≤u≤d1

f(u) ≥ λ−1ϕp(d1/C2),

(4.21) min
ξm−2d2/T≤u≤d2

f(u) ≥ λ−1ϕp(d2/C2).

By (4.17) and (4.20), (4.18) and (4.21), Lemma 4.3, we can complete the proof.
�

Theorem 4.4. Suppose (H1)-(H3) hold, if f0 = 0 and f∞ = 0, then for each
λ ∈ (λ2,∞) the problem (1.1), (1.2) has at least two positive solutions.
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Proof. Define

b(r) =
ϕp (r/C2)

minξm−2r/T≤u≤r f(u)
, r ∈ (0,∞).

By f0 = 0 and f∞ = 0 we easily see that b(r) : (0,∞) → (0,∞) is continuous
and

lim
r→0

b(r) = lim
r→∞

b(r) = ∞.

Thus there exists r0 ∈ (0,∞), such that b(r0) = infr>0 b(r) = λ2. For λ ∈
(λ2,∞), there exist constants d1, d2(0 < d1 < r0 < d2 < ∞) with b(d1) =
b(d2) = λ.

Therefore
f(u) ≥ ϕp(d1/C2)/λ for u ∈ [ξm−2d1/T, d1] ,

f(u) ≥ ϕp(d2/C2)/λ for u ∈ [ξm−2d2/T, d2] .

On the other hand, using f0 = 0, we know that there is a constant c1(0 < c1 <
d1) with

f(u)/ϕp(u) ≤ λ−1ϕq (C1) for u ∈ (0, c1).

(4.22) max
0≤u≤c1

f(u) ≤ ϕp (c1/C1) /λ.

In view of f∞ = 0, there exists a constant c2 ∈ (d2,∞) such that

f(u)/ϕp(u) ≤ ϕq(C1λ) for u ∈ (c2,∞) .

Let M = supu∈[0,c2] f(u) and c2 ≥ C1ϕq(λM). It is easily seen that

(4.23) max
0≤u≤c2

f(u) ≤ ϕp (c2/C1) /λ.

By (4.22), (4.23) and Lemma 4.3, we can complete the proof. �

5. Nonexistence

In this section, we give some sufficient conditions for the nonexistence of
positive solution to the problem (1.1), (1.2).

Theorem 5.1. Suppose (H1)-(H3) hold, if F0 < ∞, F∞ < ∞, then there exists
a λ0 > 0 such that for all 0 < λ < λ0, (1.1), (1.2) has no positive solution.

Proof. Since F0 < ∞ and F∞ < ∞, there exist positive numbers l1, l2, r1 and
r2 such that r1 < r2 and

f(u) ≤ l1ϕp(u) for u ∈ [0, r1] ,

f(u) ≤ l2ϕp(u) for u ∈ [r2,∞).

Let L = max {l1, l2, maxr1≤u≤r2 {f(u)ϕq(u}} , then we have

f(u) ≤ Lϕp(u) for u ∈ [0,∞).
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Assume v(t) is a positive solution of (1.1), (1.2). We will show that this leads
to a contradiction for 0 < λ < λ0 := L−1ϕq(C1). Since Aλv(t) = v(t) for
t ∈ [0, T ], then

‖v‖ = ‖Aλv‖ ≤
∫ T

0

ϕq

(
d

∫ T

0

λh(τ)f(v(τ))∇τ

)
∆s

≤ ϕq(λL) ‖v‖
∫ T

0

ϕq

(
d

∫ T

0

h(τ)∇τ

)
∆s = ϕq(λL) ‖v‖C1 < ‖v‖ ,

which is a contradiction. Therefore, (1.1), (1.2) has no positive solution. �

Theorem 5.2. Suppose (H1)-(H3) hold, if f0 > 0, f∞ > 0, then there exist a
λ0 > 0 such that for all λ > λ0, (1.1), (1.2) has no positive solution.

Proof. By f0 > 0, f∞ > 0, we know that there exist m1, m2, r1 and r2 such
that r1 < r2 and

f(u) ≥ m1ϕp(u) for u ∈ [0, r1] ,

f(u) ≥ m2ϕp(u) for u ∈ [r2,∞) .

Let m3 = min {m1,m2,minr1≤u≤r2 {f(u)ϕq(u)}} > 0, then we get

f(u) ≥ m3ϕp(u) for u ∈ [0,∞).

Assume v(t) is a positive solution of (1.1), (1.2). We will show that this leads
to a contradiction for λ > λ0 := (m3)

−1
ϕp (ξm−2C2/T ) . Since Aλv(t) = v(t)

for t ∈ [0, T ], then

‖v‖ = ‖Aλv‖

≥ ξm−2

T
Aλv(T ) ≥ ξm−2

T

∫ T

ξm−2

ϕq

(∫ T

s

λh(τ)f(v(τ))∇τ

)
∆s

= ϕq(λm3)
ξm−2

T
‖v‖C2 > ϕq(λ0m3)

ξm−2

T
‖v‖C2 = ‖v‖ ,

which is a contradiction. Thus, (1.1), (1.2) has no positive solution. �

Example 5.3. Let T ={1 − ( 1
2

)N0} ∪ {1}, where N0 denotes the set of all
nonnegative integers. Taking T = 1, p = 2,m = 3, a1 = 1/4, ξ1 = 1/2, if we
let h(s) = 1, then C1 =

∫ 1

0
4
3

∫ 1

0
1 ∇τ∆s = 4

3 , C2 = 1
2

∫ 1

1/2

∫ 1

s
1∇τ∆s = 1/3.

Suppose

f(u) =
1 + 150u

1 + u
u

(
3
2

+ sin u

)
, u ≥ 0.

Clearly f is always increasing and F0 = f0 = 3/2, F∞ = 375, f∞ = 75.
By direct calculation, it is easy to get that

(f∞)−1
ϕq (ξ1C2/T ) = 0.08, (F0)

−1
ϕq(C1) = 0.5,

l−1ϕq(C1) = 0.0133 and (m3)
−1

ϕp (ξ1C2/T ) = 4.
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Thus the boundary value problem

u∆∇(t) + f(u(t)) = 0,

u(0) = 0, u∆(1) = 3/4u∆ (1/2)

has at least one positive solutions for 0.08 < λ < 0.5, has no solution in P
for 0 < λ < 0.0013 or λ > 4 by Theorem 4.1, Theorem 5.1 and Theorem 5.2
respectively.
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