• Title/Summary/Keyword: Eigenvalue Problem

Search Result 549, Processing Time 0.026 seconds

AT LEAST TWO SOLUTIONS FOR THE ASYMMETRIC BEAM SYSTEM WITH CRITICAL GROWTH

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.331-342
    • /
    • 2011
  • We consider the multiplicity of the solutions for a class of a system of critical growth beam equations with periodic condition on t and Dirichlet boundary condition $$\{u_{tt}+u_{xxxx}=av+\frac{2{\alpha}}{{\alpha}+{\beta}}u_{+}^{{\alpha}-1}v_{+}^{\beta}+s{\phi}_{00}\;\;in\;(-\frac{\pi}{2},\;\frac{\pi}{2}){\times}R,\\u_{tt}+v_{xxxx}=bu+\frac{2{\alpha}}{{\alpha}+{\beta}}u_{+}^{\alpha}v_{+}^{{\beta}-1}+t{\phi}_{00}\;\;in\;(-\frac{\pi}{2},\;\frac{\pi}{2}){\times}R,$$ where ${\alpha}$, ${\beta}$ > 1 are real constants, $u_+=max\{u,0\}$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_00=1$ of the eigenvalue problem $u_{tt}+u_{xxxx}={\lambda}_{mn}u$. We show that the system has a positive solution under suitable conditions on the matrix $A=\(\array{0&a\\b&0}\)$, s > 0, t > 0, and next show that the system has another solution for the same conditions on A by the linking arguments.

Development of an Effective Method for Extracting Eigenvalues of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 해석 기법 개발)

  • Kang, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.124-129
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn't take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

  • PDF

Development of an Improved NDIF Method for Efficiently Extracting Eigenvalues and Eigenmodes of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 및 고유모드 추출을 위한 개선된 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.960-966
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues and eigenmodes of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn's take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues and mode shapes can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

Effects of load height application and pre-buckling deflections on lateral buckling of thin-walled beams

  • Mohri, F.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.401-415
    • /
    • 2006
  • Based on a non-linear model taking into account flexural-torsional couplings, analytical solutions are derived for lateral buckling of simply supported I beams under some representative load cases. A closed form is established for lateral buckling moments. It accounts for bending distribution, load height application and pre-buckling deflections. Coefficients $C_1$ and $C_2$ affected to these parameters are then derived. Regard to well known linear stability solutions, these coefficients are not constant but depend on another coefficient $k_1$ that represents the pre-buckling deflection effects. In numerical simulations, shell elements are used in mesh process. The buckling loads are achieved from solutions of eigenvalue problem and by bifurcations observed on non linear equilibrium paths. It is proved that both the buckling loads derived from linear stability and eigenvalue problem lead to poor results, especially for I sections with large flanges for which the behaviour is predominated by pre-buckling deflection and the coefficient $k_1$ is large. The proposed solutions are in good agreement with numerical bifurcations observed on non linear equilibrium paths.

A PARALLEL PRECONDITIONER FOR GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHOD

  • MA, SANGBACK;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • In this study, we shall be concerned with computing in parallel a few of the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue problem, $Ax={\lambda}Bx$, where A is symmetric, and B is symmetric positive definite. Both A and B are large and sparse. Recently iterative algorithms based on the optimization of the Rayleigh quotient have been developed, and CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for small extreme eigenvalues. As in the case of a system of linear equations, successful application of the CG scheme to eigenproblems depends also upon the preconditioning techniques. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. The idea underlying the present work is a parallel computation of the Multi-Color Block SSOR preconditioning for the CG optimization of the Rayleigh quotient together with deflation techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n, where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message Passing Interface) library was adopted for the interprocessor communications. The test problems were drawn from the discretizations of partial differential equations by finite difference methods.

  • PDF

Free vibration of primary-secondary structures with multiple connections (다중 지지된 주-부 구조물의 자유진동)

  • 민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.63-68
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical dosed-form expressions describing the fundamental modal properties of the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF

Variable Selection in Sliced Inverse Regression Using Generalized Eigenvalue Problem with Penalties

  • Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.215-227
    • /
    • 2007
  • Variable selection algorithm for Sliced Inverse Regression using penalty function is proposed. We noted SIR models can be expressed as generalized eigenvalue decompositions and incorporated penalty functions on them. We found from small simulation that the HARD penalty function seems to be the best in preserving original directions compared with other well-known penalty functions. Also it turned out to be effective in forcing coefficient estimates zero for irrelevant predictors in regression analysis. Results from illustrative examples of simulated and real data sets will be provided.