ON A PARTIAL DIFFERENTIAL OPERATOR ASSOCIATED WITH THE EIGENVALUE PROBLEM OF THE INVARIANT LAPLACIAN

Hyo-Jeong Jeong and Hong Oh Kim

Dedicated to Professor Younki Chae on his sixtieth birthday

For $\lambda = 4m(n+m)$, a function $f(z) = (1-|z|^2)^m g(z)$ with $g \in X_{\lambda}$, the eigenspace of the invariant Laplacian $\tilde{\Delta}$ in the unit ball B_n of \mathbb{C}^n , satisfies an elliptic differential equation $\Delta_m f = 0$. We make a study of the operator Δ_m as another way to study $\tilde{\Delta} - 4m(n+m)$. For example, if Z_m denotes the class of all solutions f in $C^2(B_n)$ of $\Delta_m f = 0$, we obtain an L^2 -growth condition for the projection of a function in Z_m onto H(p,q), the space of all harmonic homogeneous polynomials on \mathbb{C}^n of degree p in z and of degree q in \bar{z} , to be 0 unless either $p \leq m$ or $q \leq m$. This corresponds and gives another way to obtain the L^2 -growth condition for a function in X_{λ} to be in the \mathcal{M} -subspace Y_4 of X_{λ} . Y_4 is the space of pluriharmonic functions in the case $\lambda = 0$.

1. Introduction

Let n be any positive integer. Throughout this thesis, \mathbb{C}^n is the ndimensional complex space with the inner product

$$\langle z, w \rangle = \sum_{j=1}^{n} z_j \overline{w}_j$$
 $(z, w \in \mathbf{C}^n),$

and the associated norm

$$|z| = \langle z, z \rangle^{\frac{1}{2}}$$
 $(z \in \mathbf{C}^n).$

The second author was partially supported by KOSEF and TGRC.

Received September 1, 1992.

Hyo-Jeong Jeong and Hong Oh Kim

The inner product and the norm make \mathbb{C}^n an *n*-dimensional Hilbert space whose open unit ball is denoted by B. Thus B consists of all $z \in \mathbb{C}^n$ with |z| < 1. The boundary of B is denoted by ∂B , the set of all $z \in \mathbb{C}^n$ with |z| = 1. The unique normalized rotation-invariant measure on ∂B is denoted by σ . The invariant Laplacian $\tilde{\Delta}$ is defined by

$$T(\tilde{\Delta}f)(z) = 4(1-|z|^2) \sum_{j,k=1}^n (\delta_{jk}-z_j\bar{z}_k) \frac{\partial^2 f}{\partial z_j \partial \bar{z}_k}(z), \qquad f \in C^2(B)$$

where δ_{jk} is the Kronecker's symbol. The term "invariant" means that it commutes with the automorphisms of B:

$$\tilde{\Delta}(f\circ\varphi)=(\tilde{\Delta}f)\circ\varphi$$

for every $f \in C^2(B)$ and $\varphi \in Aut(B)$, the group of all automorphisms of B. For a $\lambda \in \mathbb{C}$, we let X_{λ} denote the space of all $f \in C^2(B)$ that satisfy $\tilde{\Delta}f = \lambda f$. We only consider the case $\lambda = 4m(n+m)$, where m is a nonnegative integer, since \mathcal{M} -subspaces(=closed Möbius invariant subspaces) of X_{λ} are trivial for other λ 's. For a nonnegative integer m, we set $f(z) = (1 - |z|^2)^m g(z)$ with $g \in X_{\lambda}(\lambda = 4m(n+m))$. Then f satisfies a differential equation $\Delta_m f = 0$, where

$$\Delta_m = \sum_{j,k=1}^n (\delta_{jk} - z_j \bar{z}_k) \frac{\partial^2}{\partial z_j \partial \bar{z}_k} + m \left(\sum_{j=1}^n z_j \frac{\partial}{\partial z_j} + \bar{z}_j \frac{\partial}{\partial \bar{z}_j} \right) - m^2.$$

We denote by Z_m the space of all solutions of $\Delta_m f = 0$:

$$Z_m = \left\{ f \in C^2(B) : \Delta_m f = 0 \right\}.$$

Then $g \in X_{\lambda}(\lambda = 4m(n+m))$ if and only if $f \in Z_m$. In other words, the fact that g is a solution of the equation $\tilde{\Delta}g = 4m(n+m)g$ is equivalent to the fact that $f(z) = (1 - |z|^2)^m g(z)$ is a solution of $\Delta_m f = 0$. The operator Δ_m is easier to handle than $\tilde{\Delta}$ is but unfortunately it is not invariant under the compositions of automorphisms of B. We make a study of the operator Δ_m as another way to study $\tilde{\Delta} - 4m(n+m)$ and obtain the corresponding versions on Δ_m of the results on $\tilde{\Delta} - 4m(n+m)$ in [3].

2. Harmonic Homogeneous Polynomials

2.1 \mathcal{H}_s . We denote by \mathcal{H}_s the space of all harmonic polynomials homogeneous on \mathbb{C}^n of order s:

$$\mathcal{H}_s \equiv \{f : \Delta f = 0 \text{ and } f(tz) = t^s f(z) \text{ for } t > 0\}.$$

Here Δ denotes the ordinary Laplacian. It is defined to be

$$\Delta = 4 \sum_{j=1}^{n} \frac{\partial^2}{\partial z_j \partial \bar{z}_j}.$$

2.2 H(p,q). H(p,q) denotes the space of all harmonic homogeneous polynomials on \mathbb{C}^n of degree p in z and degree q in \overline{z} :

$$H(p,q) \equiv \left\{ f \in \mathcal{H}_{p+q} : f(z) = \sum_{|\alpha|=p, |\beta|=q} C_{\alpha\beta} z^{\alpha} \bar{z}^{\beta} \right\},\$$

where $C_{\alpha\beta}$'s are complex constants.

2.3 Projection π_{pq} . For each (p,q), the projection $\pi_{pq} : L^2(\partial B) \to H(p,q)$ is given by the integral kernel K_{pq} defined by

$$\pi_{pq}f(\eta) = \int_{\partial B} K_{pq}(\eta,\zeta)f(\zeta)d\sigma(\zeta), \qquad f \in L^2(\partial B).$$

See[5,12.2.5].

2.4. Some basic facts .

The following properties of the space H(p,q) are well known.

(a) $\mathcal{H}_s = \sum_{p+q=s} H(p,q)$ and H(p,q)'s are pairwise orthogonal spaces. [5, 12.2.2]

- (b) The linear span of $\bigcup_{s=0}^{\infty} \mathcal{H}_s$ is dense in $C(\partial B)$. [5, 12.1.3]
- (c) $L^{2}(\partial B) = \oplus H(p,q), \qquad 0 \le p,q \le \infty.$ [5, 12.2.3]

2.5 Hypergeometric functions. The second order linear differential equation

$$t(1-t)y'' + [\gamma - (\alpha + \beta + 1)t]y' - \alpha\beta y = 0$$
⁽¹⁾

is called the Gauss hypergeometric equation, where α, β, γ are constants. The differential equation (1) has a regular singular point at t = 0 and has a unique solution y = y(t) with y(0) = 1. By [4], the unique solution y(t)is given by the Gauss hypergeometric series

$$F(\alpha,\beta,\gamma;t) = \sum_{k=0}^{\infty} \frac{(\alpha)_k(\beta)_k}{(\gamma)_k} \frac{t^k}{k!},$$

where $(\alpha)_k = \Gamma(\alpha + k) / \Gamma(\alpha)$.

2.6. Radial derivative $\mathcal{D}^{\beta}f$. If f is real-analytic in B then f has a homogeneous expansion

$$f(z) = \sum_{k=0}^{\infty} P_k(z, \bar{z}),$$

where P_k is a homogeneous polynomial in z and \overline{z} of total degree k. For $\beta > 0$, we define the radial derivative $\mathcal{D}^{\beta} f$ of f of order β is defined as

$$\mathcal{D}^{\beta}f(z) = \sum_{k} (k+1)^{\beta} P_{k}(z,\bar{z}).$$

3. Operator Δ_m

3.1. Proposition. For $f(z) = (1 - |z|^2)^m g(z)$, $\tilde{\Delta}g = 4m(n+m)g$ is equivalent to $\Delta_m f = 0$.

Proof. Since $g(z) = (1 - |z|^2)^{-m} f(z)$, we have

$$\frac{\partial g}{\partial z_j} = m(1-|z|^2)^{-m-1}\overline{z}_j f + (1-|z|^2)^m \frac{\partial f}{\partial z_j},$$

$$\frac{\partial g}{\partial \overline{z}_j} = m(1-|z|^2)^{-m-1} z_j f + (1-|z|^2)^m \frac{\partial f}{\partial \overline{z}_j},$$

$$\frac{\partial^2 g}{\partial z_j \partial \overline{z}_k} = m(m+1)(1-|z|^2)^{-m-2}\overline{z}_j z_k f + m(1-|z|^2)^{-m-1} \delta_{jk} f$$

$$+ m(1-|z|^2)^{-m-1}\overline{z}_j \frac{\partial f}{\partial \overline{z}_k} + m(1-|z|^2)^{-m-1} z_k \frac{\partial f}{\partial z_j},$$

$$(1-|z|^2)^m \frac{\partial^2 f}{\partial z_j \partial \overline{z}_k}.$$

Therefore, after some algebraic manipulations, $\tilde{\Delta}g = 4m(n+m)$ is equivalent to

$$\left\{\sum_{j,k=1}^{n} (\delta_{jk} - z_j \bar{z}_k) \frac{\partial^2}{\partial z_j \partial \bar{z}_k} + m \sum_{j=1}^{n} \left(z_j \frac{\partial}{\partial z_j} + \bar{z}_j \frac{\partial}{\partial \bar{z}_j} \right) - m^2 \right\} f(z) = 0.$$

That is, $\Delta_m f = 0$.

We define a Poisson type kernel for the operator Δ_m

$$P_m(z,\eta) = \frac{\Gamma(n+m)^2}{\Gamma(n)\Gamma(n+2m)} \frac{(1-|z|^2)^{n+2m}}{|1-\langle z,\eta \rangle |^{2n+2m}}, z \in B, \eta \in \partial B.$$

For a function $f \in C(\partial B)$, a solution of the Dirichlet problem for Δ_m is shown to be given by

$$P_m[f](z) = \int_{\partial B} P_m(z,\eta) f(\eta) d\sigma(\eta), \qquad z \in B,$$

in the following proposition.

3.2. Proposition. (a) If $f \in C(\partial B)$ and $F(z) = P_m[f](z)$, then

$$\Delta_m F = 0 \tag{1}$$

and

$$\lim_{r \to 1} F(r\zeta) = f(\zeta) \tag{2}$$

uniformly for ζ as $r \to 1$.

(b) In particular, if $f \in H(p,q)$, then

$$F(z) = \frac{F(p-m, q-m, p+q+n; r^2)}{F(p-m, q-m, p+q+n; 1)}f(z).$$

Proof. (a) We note that

$$P_m(z,\eta) = \frac{\Gamma(n+m)^2}{\Gamma(n)\Gamma(n+2m)} (1-|z|^2)^m P(z,\eta)^{1+\frac{m}{n}},$$

where $P(z,\eta)$ is the invariant Poisson kernel of $\tilde{\Delta}$ on B. Since $P^{1+\frac{m}{n}} \in X_{4m(n+m)}$, $P_m(z,\eta) \in Z_m$ for a fixed $\eta \in \partial B$, by Proposition 3.1. Therefore,

$$\begin{aligned} (\Delta_m F)(z) &= \Delta_m \left(\int_{\partial B} P_m(z,\eta) f(\eta) d\sigma(\eta) \right) \\ &= \int_{\partial B} \Delta_m P_m(z,\eta) f(\eta) d\sigma(\eta) \\ &= 0. \end{aligned}$$

This proves (1). We note that

$$\begin{aligned} \alpha(n,m,r) &\equiv \int_{\partial B} P_m(r\zeta,\eta) d\sigma(\eta) \\ &= \frac{\Gamma(n+m)^2}{\Gamma(n)\Gamma(n+2m)} F(-m,-m,n;r^2) \longrightarrow 1 \end{aligned}$$

as $r \to 1$ by Theorem 2.3 and Corollary 2.4 of [3] and (9.5.3) of [4]. We also note that

$$P_m[f](r\zeta) - f(\zeta) = P_m[f](z) - \alpha(n, m, r)f(\zeta) + f(\zeta)\{\alpha(n, m, r) - 1\}$$

=
$$\int_{\partial B} (f(\eta) - f(\zeta))P_m(r\zeta, \eta)d\sigma(\eta) + f(\zeta)\{\alpha(n, m, r) - 1\}$$

=
$$I + II.$$

For a given $\epsilon > 0$, let $\delta > 0$ be such that $|f(\eta) - f(\zeta)| < \epsilon$ for $|\eta - \zeta| < \delta$; δ depends only on ϵ and not on ζ by the uniform continuity of f. We estimate(I) as a sum of two estimates:

$$|(I)| \le \left(\int_{|\eta-\zeta|>\delta} + \int_{|\eta-\zeta|<\delta}\right)|f(\eta) - f(\zeta)|P_m(r\zeta,\eta)d\sigma(\eta).$$
(3)

The first integral of (3) is

$$\int_{|\eta-\zeta|>\delta} |f(\eta) - f(\zeta)| P_m(r\zeta,\eta) d\sigma(\eta)$$

$$\leq \int_{|\eta-\zeta|>\delta} (|f(\eta)| + |f(\zeta)|) P_m(r\zeta,\eta) d\sigma(\eta)$$

$$\leq 2||f|| \int_{|\eta-\zeta|>\delta} P_m(r\zeta,\eta) d\sigma(\eta)$$

$$< \epsilon$$
(4)

for r sufficiently close to 1, since $P_m(r\zeta, \eta) \to 0$ as $r \to 1$ uniformly for $|\eta - \zeta| > \delta$.

The second integral of (3) is

$$\int_{|\eta-\zeta|<\delta} |f(\eta) - f(\zeta)| P_m(r\zeta,\eta) d\sigma(\eta) \leq \epsilon \int_{|\eta-\zeta|<\delta} P_m(r\eta,\zeta) d\sigma(\eta) \\
\leq \alpha(n,m,r)\epsilon \\
< 2\epsilon$$
(5)

for r sufficiently close to 1. For the estimate of (II), we have

$$\begin{aligned} |(II)| &\leq ||f|| \cdot |\alpha(n,m,r) - 1| \\ &< \epsilon \end{aligned} (6)$$

for r sufficiently close to 1. Therefore (2) follows from (3),(4),(5) and (6). (b) Since every function in H(p,q) is a linear combination of unitary transformations of $z_1^p \overline{z}_2^q$, we let $f(z) = z_1^p \overline{z}_2^q$ and seek a solution of the form $F(z) = g(r^2) z_1^p \overline{z}_2^q$. A straightforward computation shows that

$$\sum_{j=1}^{n} \frac{\partial^2 F}{\partial z_j \partial \bar{z}_j} = [r^2 g''(r^2) + (n+p+q)g'(r^2)] z_1^p \bar{z}_2^q,$$
$$\sum_{j,k=1}^{n} z_j \bar{z}_k \frac{\partial^2 F}{\partial z_j \partial \bar{z}_k} = [r^4 g''(r^2) + (p+q+1)r^2 g'(r^2) + pqg(r^2)] z_1^p \bar{z}_2^q,$$
$$\sum_{j=1}^{n} z_j \frac{\partial F}{\partial z_j} = [g'(r^2)r^2 + pg(r^2)] z_1^p \bar{z}_2^q,$$

and

$$\sum_{j=1}^{n} \bar{z}_{j} \frac{\partial F}{\partial \bar{z}_{j}} = [g'(r^{2})r^{2} + qg(r^{2})]z_{1}^{p} \bar{z}_{2}^{q}.$$

Hence

$$\{r^{2}(1-r^{2})g''(r^{2}) + (n+p+q-(p-m+q-m+1)r^{2})g'(r^{2}) - (p-m)(q-m)g(r^{2})\}z_{1}^{p}\bar{z}_{2}^{q} = 0.$$

Therefore, if $\Delta_m F = 0$, g must satisfy the following ordinary differential equation

$$t(1-t)g''(t) + (n+p+q-(p-m+q-m+1)t)g'(t) -(p-m)(q-m)g(t) = 0.$$
(7)

But this is the hypergeometric equation with parameters $\alpha = p - m, \beta = q - m, \gamma = n + p + q$ and the solutions are constant multiples of F(p - m, q - m, n + p + q; t). Thus

$$F(z) = CF(p-m, q-m, n+p+q; r^2)f(z)$$

and since $F(r\zeta) \to f(\zeta)$ as $r \to 1$, $C = F(p-m, q-m, n+p+q; 1)^{-1}$.

3.3. Operator $L_{p,q,m}$. For $f(z) = y(|z|^2)h(z)$ with $y \in C^2([0,1]), h \in H(p,q), \Delta_m f$ is seen in (7) to have the form

$$(\Delta_m f)(z) = (L_{p,q,m})(|z|^2)h(z)$$

where

$$(L_{p,q,m}y)(t) = t(1-t)y'' + [p+q+n-(p-m+q-m+1)t]y' - (p-m)(q-m)y.$$

The differential equation $L_{p,q,m}y = 0$ is the Gauss differential equation with parameters $\alpha = p - m, \beta = q - m$ and $\gamma = n + p + q$. Therefore it has a unique solution y = R(p,q,m;t) with y(0) = 1, where R(p,q,m;t) = F(p-m,q-m,p+q+n;t). For a function f in H(p,q), $P_m[f](z) = C(p,q,m)R(p,q,m;|z|^2)f(z)$,

where $C(p,q,m) = F(p-m,q-m,p+q+n;1)^{-1}$ by Proposition 3.2.

We define H(p,q,m) by

$$H(p,q,m) = \left\{ f: f(z) = R(p,q,m;|z|^2)h(z), h \in H(p,q) \right\}.$$

and define $\tilde{\pi}_{pq} f$ by

$$(\tilde{\pi}_{pq}f)(z) = (\pi_{pq}f_r)(\zeta), \qquad z = r\zeta,$$

where $f_r(\zeta) = f(r\zeta)$ for $0 \le r < 1$ and for $\zeta \in \partial B$. Then $\tilde{\pi}_{pq}$ projects Z_m onto H(p,q,m). See [6].

The expansion of $P_m(z,\zeta)$ is given as follows. We follow the argument in [3] for the proof.

3.4. Proposition . If m is a nonnegative integer then

$$P_m(z,\zeta) = \sum_{p,q=0}^{\infty} G_{p,q,m}(r) K_{pq}(\eta,\zeta), \qquad z = r\eta \in B, \zeta \in \partial B, \quad (1)$$

where $G_{p,q,m}(r) = C(p,q,m)R(p,q,m;r^2)r^{p+q}$. The series on the right of (1) converges absolutely and uniformly for $\eta, \zeta \in \partial B$ and $0 \leq r \leq \rho$ for each $\rho < 1$.

Proof. Let $z = r\eta \in B$. Then we obtain

$$\begin{aligned} |G_{p,q,m}(r)| &= |C(p,q,m)R(p,q,m;r^2)|r^{p+q} \\ &= C(p,q,m)F(p-m,q-m,n+p+q;r^2)r^{p+q} \\ &\leq F(p-m,q-mn+p+q;1)^{-1}F(p-m,q-m,n+p+q;1)r^{p+q} \\ &= r^{p+q} \end{aligned}$$

for $p, q \ge m$. On the other hand, $K_{pq}(\eta, \zeta)$ is uniformly bounded by constant times $(p+q+1)^{2n}$ by [2, p406-407]. Hence

$$\sum_{p,q \ge m}^{\infty} |G_{p,q,m}(r)K_{pq}(r\eta)| \le C(n) \sum_{p,q > N}^{\infty} r^{p+q}(p+q+1)^{2n}$$
$$\le C(n) \sum_{k>2N}^{\infty} r^k (k+1)^{2n}$$

On a partial differential operator

where C(n) is a constant independent of p and q. Therefore the series (1) converges and uniformly for $\eta, \zeta \in \partial B$ and $r \leq \rho < 1$. Fix r < 1. Let $f \in \mathcal{H}_s$. Then $f = \sum_{p+q=s} f_{pq}$ where $f_{pq} = \pi_{pq} f \in H(p,q)$.

$$P_m[f](z) = \int_{\partial B} P_m(r\eta,\zeta) f(\zeta) d\sigma(\zeta)$$

=
$$\sum_{p+q=s} \int_{\partial B} P_m(r\eta,\zeta) f_{pq}(\zeta) d\sigma(\zeta).$$

By the remarks in 3.3,

$$P_{m}[f](z) = \sum_{p+q=s} C(p,q,m)R(p,q,m;r^{2})f_{pq}(\eta)$$

=
$$\sum_{p+q=s} G_{p,q,m}(r)f_{pq}(\eta).$$
 (2)

Since

$$f_{pq} = (\pi_{pq}f)(\eta) = \int_{\partial B} K_{pq}(\eta,\zeta) f(\zeta) d\sigma(\zeta),$$

(2) has following form

$$P_{m}[f](z) = \int_{\partial B} \sum_{p+q=s} G_{p,q,m} K_{pq}(\eta,\zeta) f(\zeta) d\sigma(\zeta)$$
$$= \int_{\partial B} \sum_{p,q=0}^{\infty} G_{p,q,m} K_{pq}(\eta,\zeta) f(\zeta) d\sigma(\zeta)$$
(3)

for $f \in \mathcal{H}_s$. Since the linear span of $\bigcup_{s=0}^{\infty} \mathcal{H}_s$ is dense $C(\partial B)$, (3) is true for any $f \in C(\partial B)$. Hence we have the expansion in (1).

4. Growth conditions

Two growth conditions are given, one for the Poisson type integral representations and the other for the projection of a function in Z_m onto H(p,q) to be 0 unless either $p \leq m$ or $q \leq m$. We follow the arguments in [3] for the proofs.

4.1. Proposition . $f = P_m[F]$ for some $F \in L^2(\partial B)$ if and only if $f \in Z_m$ and

$$\sup_{0 \le r < 1} \int_{\partial B} |f(r\zeta)|^2 d(\zeta) < \infty.$$
(1)

Proof. Suppose $f = P_m[F]$ and $F \in L^2(\partial B)$. Then $f \in Z_m$. We use the continuous form of Minkowski inequality to get

$$\begin{split} \int_{\partial B} |f(r\zeta)|^2 d\sigma(\zeta) &= \int_{\partial B} \left| \int_{\partial B} F(\eta) P_m(r\zeta, \eta) d\sigma(\eta) \right|^2 d\sigma(\zeta) \\ &\leq \int_{\partial B} \int_{\partial B} |F(\eta)|^2 P_m(r\zeta, \eta) d\sigma(\eta) d\sigma(\zeta) \\ &= \int_{\partial B} |F(\eta)|^2 \int_{\partial B} P_m(r\zeta, \eta) d\sigma(\zeta) d\sigma(\eta) \\ &= \alpha(n, m, r) \|F\|_2^2 \\ &\approx \|F\|_2^2. \end{split}$$

Suppose $f \in Z_m$ and (1) holds. It follows from the remarks in 3.3 that

$$(\tilde{\pi}_{pq}f)(z) = R(p,q,m;|z|^2)f_{pq}(z), \qquad z \in B$$

for some $f_{pq} \in H(p,q)$. Since f is real-analytic in B, f lies in the closed linear span of $\tilde{\pi}_{pq}f$. Hence,

$$f(z) = \lim_{N \to \infty} \sum_{p+q \le N} R(p,q,m;t) f_{pq}(z)$$
(2)

in the topology of uniform convergence on compact subsets of B. Define F by

$$F(\zeta) = \sum_{p,q} C(p,q,m)^{-1} f_{pq}(\zeta) \qquad (\zeta \in \partial B).$$
(3)

We will show that $F \in L^2(\partial B)$. From (1) and (2), we have

$$\infty > C \geq \int_{\partial B} |f(r\zeta)|^2 d\sigma(\zeta) = \sum_{p,q=0}^{\infty} R(p,q,m;r^2)^2 r^{2(p+q)} ||f_{pq}||_2^2.$$
(4)

On the other hand,

$$R(p,q,m;r^2) = F(p-m,q-m,n+p+q;r^2)$$

which increases to

$$F(p-m, q-m, n+p+q; 1) \equiv = C(p, q, m)^{-1}$$

as $r \nearrow 1$. Therefore if we take limits as $r \nearrow 1$ in (4) we get

$$\sum C(p,q,m)^{-2} \|f_{pq}\|_2^2 < \infty.$$
(5)

On a partial differential operator

(3) and (5) then imply $F \in L^2(\partial B)$. If we let

$$F_N(\zeta) = \sum_{p+q \le N} C(p,q,m)^{-1} f_{pq}(\zeta) \qquad (\zeta \in \partial B)$$
(6)

and fix $z \in B, F_N \to F$ in $L^2(\partial B)$, so that

$$\lim_{N \to \infty} P_m[F_N](z) = P_m[F](z).$$
(7)

Therefore by (6),(7) and remarks in 3.3, we have

$$P_{m}[F](z) = \lim_{N \to \infty} P_{m}[F_{N}](z)$$

= $\lim_{N \to \infty} P_{m}[\sum_{p+q \le N} C(p,q,m)^{-1}f_{pq}](z)$
= $\lim_{N \to \infty} \sum_{p+q \le N} C(p,q,m)^{-1}P_{m}[f_{pq}](z)$
= $\lim_{N \to \infty} \sum_{p+q \le N} C(p,q,m)^{-1}C(p,q,m)R(p,q,m;|z|^{2})f_{pq}(z)$
= $f(z).$

4.2. Proposition . Let $f \in \mathbb{Z}_m$. If

$$\int_{\partial B} |\mathcal{D}^{n+2m} f(r\zeta)|^2 d\sigma(\zeta) = o(\log^2 \frac{1}{1-r}) \tag{1}$$

as $r \to 1$ then $\pi_{pq}f = 0$ unless either $0 \le p \le m$ or $0 \le q \le m$. Proof. Let $h(z) = \mathcal{D}^{n+2m}f(z)$. If we write

$$f(z) = \sum_{k=0}^{\infty} P_k(z, \bar{z}),$$

then $h(tz) = \sum_{k=0}^{\infty} (k+1)^{n+2m} t^k P_k(z, \overline{z})$. We note that

$$\frac{1}{\Gamma(n+2m)} \int_0^1 (\log \frac{1}{t})^{n+2m-1} h(tz) dt$$

= $\frac{1}{\Gamma(n+2m)} \sum_{k=0}^\infty (k+1)^{n+2m} \int_0^1 (\log \frac{1}{t})^{n+2m-1} t^k dt$
= $\sum_{k=0}^\infty P_k(z,\bar{z})$
= $f(z).$

Therefore, if

$$\int_{\partial B} \left\{ \int_0^1 (1-t)^{n+2m-1} |h(tr\zeta)| dt \right\}^2 d\sigma(\zeta) \tag{2}$$

is bounded then

$$\int_{\partial B} |f(r\zeta)|^2 d\sigma(\zeta)$$

is bounded. By Minkowski's inequality,

$$(2) \leq \left[\int_0^1 (1-t)^{n+2m-1} \left\{ \int_{\partial B} |h(tr\zeta)|^2 d\sigma(\zeta) \right\}^{\frac{1}{2}} dt \right]^2 \\ \leq C \left(\int_0^1 (1-t)^{n+2m-1} \log \frac{1}{1-t} dt \right)^2 < \infty$$

uniformly on r by (1) where C is a constant. By Proposition 4.1, there exists an $F \in L^2(\partial B)$ such that $f = P_m[F]$. From 2.4.(c),

$$F(\zeta) = \sum_{p,q} F_{pq}(\zeta)$$

in $L^2(\partial B)$ where $F_{pq} \in H(p,q)$. Let

$$F_N = \sum_{p+q \le N} F_{pq}$$

and let $f_N = P_m[F_N]$. Then

$$f_N(z) = \sum_{p+q \le N} C(p,q,m) R(p,q,m;|z|^2) F_{pq}(z) \qquad (z \in B).$$

Since $F_N \to F$ in $L^2(\partial B)$, we know that

$$\mathcal{D}^{n+2m} f(r\eta) - \mathcal{D}^{n+2m} f_N(r\eta)$$

= $\int_{\partial B} \mathcal{D}^{n+2m} P_m(r\eta, \zeta) (F - F_N)(\zeta) d\sigma(\zeta)$
 $\longrightarrow 0 \text{ as } N \longrightarrow \infty.$ (3)

in $L^2(\partial B)$ once r is fixed.

Hence, by the orthogonality of F_{pq} and by (3), we have

$$\int_{\partial B} |\mathcal{D}^{n+2m} f(r\zeta)|^2 d\sigma(\zeta) = \sum_{p,q} |C(p,q,m)|^2 ||F_{pq}||_2^2 [\mathcal{D}^{n+2m} (R(p,q,m;r^2)r^{p+q})]^2.$$
(4)

We note that

$$\mathcal{D}^{n+2m}(R(p,q,m;r^2)r^{p+q}) = \mathcal{D}^{n+2m}[F(p-m,q-m,n+p+q;r^2)r^{p+q}] = \sum_k \frac{(p-m)_k(q-m)_k}{(n+p+q)_k k!} (2k+p+q+1)^{n+2m}r^{2k+p+q}.$$
 (5)

Thus if both p - m and q - m are a positive integer then

$$\frac{(p-m)_k(q-m)_k}{(n+p+q)_k k!} (2k+p+q+1)^{n+2m} \approx \frac{1}{k}$$

as $k \to \infty$, so that $(5) > C(n, m, p, q) \log \left(\frac{1}{1-r}\right)$ for some positive constant C(n, m, p, q). By (1),(4) and (5), $F_{pq} = 0$ unless either p - m or q - m is nonpositive integer.

Therefore $\pi_{pq}f = f_{pq} = P_m[F_{pq}] = 0$ unless either p - m or q - m is nonpositive integer.

Remark. If m = 0, above theorem corresponds to L^2 -growth condition for a function g in X_{λ} to be in the \mathcal{M} -subspace Y_4 of X_{λ} . See [1,7].

References

- P. Ahern and W.Rudin, *M-harmonic products*, Indag. Math., N.S.2(2) (1991), 141-147.
- G.B. Falland, Spherical harmonic expansion of the Possion-szegö kernel for the ball, Proc. AMS 47(1975), 401-408.
- [3] H.O. Kim and E.G. Kwon, \mathcal{M} -subspaces of X_{λ} , to appear in Illinois Math J.
- [4] N.N. Lebedev, Spherical functions and their applications, Dover Publication, inc., New York, 1972.
- [5] W. Rudin, Function theory in the unit ball of Cⁿ, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [6] W. Rudin, Eigenfunctions of the invariant Laplacian in B, J. D'analyse Matématique 43 (1983/84), 136-148.
- [7] W. Rudin, A smoothness condition that implies pluriharmonicity, unpublished preprint.

DEPARTMENT OF MATHEMATICS, KAIST, TAEJON, KOREA.