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For A = 4m(n+m), a function f(z) = (1—|z|?)™g(z) with g € X, the
eigenspace of the invariant Laplacian A in the unit ball B, of C”, satisfies
an elliptic differential equation A,, f = 0. We make a study of the operator
A,, as another way to study A — 4m(n + m). For example, if Z,, denotes
the class of all solutions f in C*(B,) of A,,f = 0, we obtain an L?-growth
condition for the projection of a function in Z,, onto H(p,q), the space
of all harmonic homogeneous polynomials on C" of degree p in z and of
degree ¢ in z, to be 0 unless either p < m or ¢ < m. This corresponds
and gives another way to obtain the L?-growth condition for a function in
X\ to be in the M-subspace Y of X,. Y is the space of pluritharmonic
functions in the case A = 0.

1. Introduction
Let n be any positive integer. Throughout this thesis, C* is the n-
dimensional complex space with the inner product
< z,w>= ) z;W; (z,w € C"),
7=1
and the associated norm

2| =< 2,2 >% (z € C").
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The inner product and the norm make C* an n-dimensional Hilbert space
whose open unit ball is denoted by B. Thus B consists of all z € C"
with |z| < 1. The boundary of B is denoted by dB, the set of all z € C"
with |z| = 1. The unique normalized rotation-invariant measure on 0B is
denoted by o. The invariant Laplacian A is defined by

ANE) = 40— 1) 3 (6~ 53 5o

Jk=1

(2), f € C*B)

where 6, is the Kronecker’s symbol. The term “invariant” means that it
commutes with the automorphisms of B:

A(fop)=(Af)oyp

for every f € C?*(B) and ¢ € Aut(B) , the group of all automorphisms
of B. For a A € C, we let X, denote the space of all f € C*(B) that
satisfy Af = Af. We only consider the case A = 4m(n + m), where
m 1s a nonnegative integer, since M-subspaces(=closed Mébius invariant
subspaces) of X, are trivial for other A’s. For a nonnegative integer m, we
set f(z) = (1 —|z|*)™g(z) with g € Xx(A = 4m(n + m)). Then f satisfies
a differential equation A,, f = 0, where

A 0 9 d )
E z,zka (,jk-l—m(X:zJ(,j +zjazj) m”.

3,k=1

We denote by Z,, the space of all solutions of A,, f = 0:
Z, ={f € C¥B) :Amfz()}.

Then g € X)(A =4m(n + m)) if and only if f € Z,,. In other words, the
fact that g is a solution of the equation Ag = 4m(n + m)g is equivalent
to the fact that f(z) = (1 — |z|*)™g(z) is a solution of A, f = 0. The
operator A,, is easier to handle than A is but unfortunately it is not
invariant under the compositions of automorphisms of B. We make a
study of the operator A,, as another way to study A — 4m(n + m) and
obtain the corresponding versions on A,, of the results on A —4m(n+m)
in [3].

2. Harmonic Homogeneous Polynomials
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2.1 'H,. We denote by H, the space of all harmonic polynomials homoge-
neous on C" of order s:

H,={f: Af =0 and f(tz) = t*f(z) for t > 0}.

Here A denotes the ordinary Laplacian. It is defined to be

Jz; sz

2.2 H(p,q) . H(p,q) denotes the space of all harmonic homogeneous
polynomials on C” of degree p in z and degree ¢ in Zz:

H(p,q) = {f € Hprq : /(2) = 1 atepoizeCas?*? }

where C,g’s are complex constants.

2.3 Projection 7,, . For each (p,q), the projection
H(p, g) is given by the integral kernel K, defined by

L*(0B) —

Pq

Tad (1) = [ Kouln, OF(Qdo(0),  f € L3B).

See[5,12.2.5].

2.4. Some basic facts .
The following properties of the space H(p,q) are well known.

(a) Ho = X p49=s H(p,q) and H(p, q)’s are pairwise orthogonal spaces.
[5, 12.2.2]

(b) The linear span of U2, H, is dense in C(d8). [5, 12.1.3]

(c) L*(0B) = ®H(p,q), 0<p,gq<oo. [5,12.2.3]

2.5 Hypergeometric functions . The second order linear differential
equation

{1 —t)y" + [y — (@ + B+ 1)y’ — afy =0 (1)
is called the Gauss hypergeometric equation, where o, 3,~ are constants.
The differential equation (1) has a regular singular point at ¢ = 0 and has
a unique solution y = y(t) with y(0) = 1. By [4], the unique solution y(t)
is given by the Gauss hypergeometric series

o, Z B &
77’ v 7 k k"
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where (@), = I'(a + £)/T'(a).

2.6. Radial derivative D°f . If f is real-analytic in B then f has a
homogeneous expansion

Hich = §Pk(z, 5

where P is a homogeneous polynomial in z and z of total degree k. For
B > 0, we define the radial derivative D? f of f of order 3 is defined as

D?f(z) = Y (k + 1)°Pi(z,2).
k

3. Operator A,,

3.1. Proposition. For f(z) = (1 — |z[*)"¢(z), Ag = 4m(n + m)g is
equivalent to A, f = 0.

Proof. Since g(z) = (1 — |z|*)™™ f(z), we have

dg 2yl iy 9f
gy = M=l TTR 0= R
L
= mi— " s -
P9 (it 1)1 — o)™ + L — | 5 f
Bz,-(ﬁk N & 3
—m—_af —m—1 af
k2 Y — |2 b
bl = )" 52 (1= o g
w Of
1.2
(- kP o

Therefore, after some algebraic manipulations, Ag = 4m(n + m) is equiv-
alent to

i(é- —z-Ek)a—2+mi :a'-i+:?-i —m?} f(z) = 0.
) 2 0z:0%; ’sz 10z;

k=1 7

That is, Ay f =10.



On a partial differential operator 405

We define a Poisson type kernel for the operator A,
MotmP (1= Jaf)eer
n)l(n +2m) |1— < z,n > |2+

For a function f € C(@B), a solution of the Dirichlet problem for A,, is
shown to be given by

Palfl(z)= [_Pu(zm)f(n)dotn), =€ B,
in the following proposition.
3.2. Proposition. (a) If f € C(9B) and F(z) = P,[f](z), then
g P =0 (1)

Pm(za"f):r( gm:zeBﬂ?eaB-

and
lim F(r¢) = £(0) @)
uniformly for ( asr — 1.

(b) In particular, if f € H(p,q), then

Flp—m,g—m,p+q+n;r?)

Tt
() Flp—m,q—m,p+q+n;1)

f(z).

Proof. (a) We note that

['(n 4+ m)?
[(n)T(n + 2m)

Pr(z,m) = (1= )" P(z,m)" =,

where P(z,7) is the invariant Poisson kernel of A on B. Since P1*% €
Xim(ntm), Pm(2,1) € Zy, for a fixed n € 9B, by Proposition 3.1. There-

fore,
(BnF)E) = B ([ Palem) o)

. /3  AnPu(z,m)f(n)do(n)
0.

This proves (1). We note that

a(n,myr) = [ Pu(r¢n)da(n)
L(n +m)?
['(n)T(n 4+ 2m)

F(—m,—m,n;r*) — 1
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as r — 1 by Theorem 2.3 and Corollary 2.4 of [3] and (9.5.3) of [4]. We

also note that

Pm[f](rC) - f((:) = Pm[f](z) - a(nvmar)f(C) + f((‘){a(n,m,r) - 1}
= [ () = FO)PalrC,mdo(n) + F(OH{aln,m,r) - 1}
= I+1I.

For a given € > 0, let § > 0 be such that |f(n) — f({)| < € for | — (| < §;
6 depends only on € and not on ( by the uniform continuity of f. We
estimate(/) as a sum of two estimates:

i< f

[n—¢|>8

tf I~ FOPCC s

The first integral of (3) is

[, s M) = FQ)1 PurC)do()
< [ A1+ S Pa(rC,)dotn)

< 2| f| Pp(r(,n)do(n)
In—=¢|>6
< € (4)

for r sufficiently close to 1, since P, (r(,7) — 0 as r — 1 uniformly for

In— ¢l > 6.
The second integral of (3) is

‘/Iﬂ—C|<6 If('-'?) - f(C)l Pm(’”(a'?)da(ﬂ) S E~[[n—(l<5 Pm('f"l], C)do(ﬂ)
< a(n,m,r)e

< 2e (5)
for r sufficiently close to 1. For the estimate of (IT), we have

D] < [IFll- le(n,m, ) =1
< € (6)

for r sufficiently close to 1. Therefore (2) follows from (3),(4),(5) and (6).

(b) Since every function in H(p, q) is a linear combination of unitary trans-

formations of 27z} , we let f(z) = 2723 and seek a solution of the form
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n aZF "
Zazjazj [T2 ( 2)+(n+p+q)g (T‘ )]2122,
=1
- _ 0*F 4 w2 2 172 2\1.P =4
2 zag o= =[r'g"(?) + (P + ¢+ 1)rg (") + pag(r))<1 2,
7,k=1 |
5 OF ,
Yo, =60 4ol
and " BF
2 Zig = o) + g(r)] 2
=1 )
Hence

{(r*1=r)g" () +(n+p+a—(p—m+q—m+1)r))g'(r?)

—(p —m)(g — m)g(r*)}21z5 = 0.

Therefore, if A,,F = 0, g must satisfy the following ordinary differential
equation

t(1-t)g"(t)+(n+p+qg—(p—m+qg—m+1)t)g'(t)
—(p —m)(g —m)g(t) = 0. (7)

But this is the hypergeometric equation with parameters a =p —m,f =
g —m,y = n+ p+ q and the solutions are constant multiples of F(p —
m,q—m,n+p+ g;t). Thus

F(z) =CF(p—m,q—mn+p+qr’)f(z)
and since F(r{) — f({)asr—=1,C=F(p—-m,q—m,n+p+¢;1)7".

3.3. Operator L,,m - For f(z) = y(|z|*)h(z) with y € C*([0,1]),h €
H(p,q), A,.f is seen in (7) to have the form

(Anf)(z) = (Lpqm)(|2*)h(2)

where

(Lpqmy)(t) = t(1-)y"+[p+q+n—(p—m+g—m+1)tly' —(p—m)(g—m)y.
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The differential equation L,,,,y = 0 is the Gauss differential equation
with parameters a = p—m,3 =qg—m and vy = n+ p+ ¢ . Therefore it
has a unique solution y = R(p, ¢, m;t) with y(0) = 1, where R(p, g, m;t) =
F(p—m,q—m,p+ ¢+ n;t).

For a function f in H(p,q), Pu[f](z) = C(p,q,m)R(p,q,m;|2|*)f(2),
where C(p,q,m) = F(p — myq—m,p+q+n;1)"! by Proposmon 3.2.

We define H(p, g, m) by

H(p,q,m) = {f : f(z) = R(p,q,m; |2")h(2), h € H(p,q)}.
and define 7, f by

(Tpaf)(2) = (mpe £)(C), z=r(,
where f,({) = f(r¢) for 0 <r <1 and for {( € dB. Then #,, projects Z,
onto H(p, g, m). See [6].

The expansion of P,(z,() is given as follows. We follow the argument
in [3] for the proof.

3.4. Proposition . If m is a nonnegative integer then

z,() = E Gpg,m(T)Kpg (1, €), z=rn € B,( € 9B, (1)

P,9=0

where Gy 4.(r) = C(p,q,m)R(p, q,m;r?)r**e. The series on the right of
(1) converges absolutely and uniformly for n,( € 9B and 0 < r < p for
each p < 1.

Proof. Let z = rn € B. Then we obtain
|Gram(r)l = |C(p,q,m)R(p, q,m;r*)|r"*
C(p,¢;m)F(p—m,q—m,n+p+g;r*)r"*

< Flp—m,q—mn+p+q;1) " 'Flp—m,g—m,n+p+q1)r’
- rp+q

for p,q > m. On the other hand, Ky,(n,() is uniformly bounded by con-
stant times (p + ¢ + 1)*" by [2, p406-407]. Hence

o0 o0

E IGp.q.m(T)qu(”f” < C(n) Z rp+q(p+q+1)2n

pg>m p,q>N

< C(n) Z (k+1)?

k>2N
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where C(n) is a constant independent of p and ¢q. Therefore the series (1)
converges and uniformly for 7,{ € 0B and r < p < 1. Fix r < 1. Let
f € Hs- Then f = Zp—i—q:s qu where fm = ”Wf € H(pa q)'

Palfl) = [, Palrn,O)f(Q)do ()
= ¥ [, Palm O fn(0)do(€).

ptg=s

By the remarks in 3.3,

P.lfl(z) = HX; C(p, g, m)R(p, g, m;77) foq(n)

= Z Gpam(7) foq(n)- (2)

rtg=s

Since

for = (1)) = [ Koalm OIS (€0,
(2) has following form

Pulfl(z) = -/33 Z GpamKpg(n,€) f({)de(C)

pHo=s

= [, 3 Gramnnln, OF(Qdo() 3)

p,q=0

for f € H,. Since the linear span of U2, H, is dense C(9B), (3) is true
for any f € C(0B). Hence we have the expansion in (1).

4. Growth conditions

Two growth conditions are given, one for the Poisson type integral
representations and the other for the projection of a function in Z,, onto
H(p,q) to be 0 unless either p < m or ¢ < m. We follow the arguments
in [3] for the proofs.

4.1. Proposition . f = P,[F] for some F € L*(dB) if and only if
f€Z, and

sup [ 1(rQ)d(¢) < oo. 1)

0<r<1
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Proof. Suppose f = P,[F] and F € L*(3B). Then f € Z,,. We use the
continous form of Minkowski inequality to get

[ erde©) = [ | F@Part st do(c)
< [ [ IF@)Pu(r¢ mdolndo(C)

- faB |F(n)|2/aB P(r¢,n)do(¢)do(n)
= o(n,m,r)||F|3
~ |IFlz.

Suppose f € Z,, and (1) holds. It follows from the remarks in 3.3 that

(70 f)2) = R(p,q,m; |2*) fra(2),  z€B

for some f,, € H(p,q). Since f is real-analytic in B, f lies in the closed
linear span of 7,, f. Hence,

@)= Jim ¥ R@a,m;t)fu(?) 2)

p+g<N

in the topology of uniform convergence on compact subsets of B. Define

F by
F(Q)=3_C(p,q,m)™" fe(C) (¢ € 9B). (3)

We will show that F' € L*(dB). From (1) and (2), we have
> 2
0>C 2 [ |f(r0)Pdo(c)

= Y R(p,q,m;r?) 9| £ ||3. (4)

p.a=0
On the other hand,

R(p,q,m;7*) = F(p—m,q —m,n+p+q;r’)
which increases to

F(p—m,q—m,n+p+g¢;1) == C(p,q,m)™"

as r /' 1. Therefore if we take limits as r /1 in (4) we get
ZC(p,q,m)—zuqu”g < 00. (5)
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(3) and (5) then imply F € L*(dB). If we let
Fn(Q)= 3 Clpasm) ' frel()  ((€0B)

pHe<N

and fix z € B, Fy — F in L*(8B), so that
Jim PalFnI(2) = PalFIC).
Thiersfore by (8).(7) and semeses in. 8.9, we have
PalFIz) = Jim PulFl(2

= Jlim Pu[ 3 C(p.g,m)7 fy)(2)
p+g<N
= lim 37 C(p,g,m) 7 Pulfl()

N=co pHg<N

411

(6)

= lim 3 C(p,q,m)™'Clp,q,m)R(p,q,m; |2[*) fra(2)

pHa<N

= f(2).

4.2. Proposition . Let f € Z,,. If

n+2m 2 a= 2#
1P £ 0)Fdo(() = oflog? ——)

ast — 1 then m,, f = 0 unless either 0 < p<m or0 < g <m.

Proof. Let h(z) = D" f(z). If we write
f(z) = Z Pk(zvg)v
k=0
then h(tz) = 152 4(k + 1)"t2™t* P,(2, Z). We note that

1 1 1
— R 1 - n+2m—1h +2)dt
F(n+2m)]o(0gt) (t2)

1

SRR S ks n+2m = n+2‘m—1tk ¢
e L+ [0 3) d

= ki_o: Pk(zai)
= f(2).
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Therefore, if

-/35 {/01(1 = i)"+2m—1|h(trC)|dt}2 do(() (2)

is bounded then

[, 1£rPdo(¢)

is bounded. By Minkowski’s inequality,

(2) < [ fo L1 — gy { /a ) |h(tr()|2da(§')}% dtr
< /(1 )"““"lkng1

uniformly on r by (1) where C is a constant. By Proposition 4.1, there
exists an F € L*(9B) such that f = P,[F]. From 2.4.(c),

F(¢) = 3 Fu(C)

dt)2 < oo

in L*(0B) where F,, € H(p,q). Let

3. F

p+9<N

and let fy = P,[Fn]. Then

3 C(p,g,m)R(p,q,m; |2|)Fy(z) (2 € B).

p+e<N
Since Fy — F in L*(0B), we know that
Dn+2mf('!'??) - »Dn+2mfN(rn)
= [ D™ P, O)(F = Fy)(Q)dor(¢)

—+ 0 as N — oo. (3)

in L*(6B) once r is fixed.
Hence, by the orthogonality of F,; and by (3), we have

[ I 1) Pdo(c)
= Z |C(P1 q, m)l2|lFPq|I§[Dn+2m(R(p: q,m; r2),rp+q)]2_ (4)
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We note that
D" (R(p, g, m;r?)rP*e)
= 73”*”2”‘[1”’(11 —m,q—m,n+p+ g;r?)ret]

(p— m(g—m)s -
_Ek: (n 4+ p+ q)pk! “(2k + p+ g+ 1) (5)

Thus if both p— m and ¢ — m are a positive integer then

1
(2k+p+q+ )™~ -

(p—m)r(q —mi
(n+p+ q)k!

as k — oo, so that (5) > C(n,m,p,q)log ( ) for some positive constant
C(n,m,p,q). By (1),(4) and (5), Fpy = 0 unless either p — m or ¢ — m is
nonpositive integer.
Therefore 7,0 f = fog = PulFp) = 0 unless either p — m or ¢ — m is
nonpositive integer.

Remark. 1f m = 0, above theorem corresponds to L?-growth condition for
a function g in X to be in the M-subspace ¥; of X,. See [1,7].
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