• Title/Summary/Keyword: Efficiency temperature coefficient

Search Result 274, Processing Time 0.027 seconds

Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment (고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가)

  • Kang, Bum-Hee;Lim, Kyeong-Ho;Lee, Sang-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature (5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석)

  • 윤희정;김성수;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

Convective heat transfer characteristics of diamond nanofluid produced by matrix synthetic method (매트릭스합성 분산법에 의해 제조된 다이아몬드 나노유체의 대류열전달 특성)

  • Son, Kwun;Lee, Jung-Seok;Park, Tae-Hee;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • The effective use and management of energy resources has been issued to solve the global warming problem and petrolium price increase. To improve the energy efficiency of a heat exchanger, a new countermeasure is required and the heat transfer research of nano-fluids as a new working fluid is needed. This study was carried out with increasing the Reynolds number and the vol% of nano-fluids in the inlet temperature of $25^{\circ}C$ and $50^{\circ}C$. As the result, the higher the entrance temperature is, the higher the convective heat transfer coefficient is.

Performance Analysis of Thermosphon Using Phase Change Material (상변화 물질을 이용한 열사이폰의 성능 분석)

  • Paek, Yee;Cho, Ki-Hyon;Lee, Joo-Seong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.3
    • /
    • pp.219-228
    • /
    • 2000
  • In order to evaluate the applicability of thermosyphon as an equipment of heat transfer to the case where natural of low temperature and low density is necessary and to propose the possibility of using natural energy being clean and inexhaustible, a thermosypon using methanol as working fluid was constructed and its transfer characteristics were analysed. The wall temperature of the thermosyphon was maintained relatively uniform after rapid increase until after being heated about ten minutes regardless of the level of input powers to the evaporating section. Inner pressure of the thermosyphon increased rapidly until after ten minutes, and then increased slowly depending on the level of input power. But heat transfer coefficient of the condensible section decreased in inverse proportion to input powers of 250~300W, showing $1008.3{\sim}829.8W/m^2{\cdot}^{\circ}C$. For the input powers of the thermosyphon within the range of 100~250W, heat transferred and heat flux increased relatively linearly showing, in the case of input powers of 250~300W, heat transfer efficiency considerable increased, showing 63.8%.

  • PDF

Forced Convection Heat Transfer in a Plate Fin With Transient Heat Conduction (과도열전도를 갖는 평판핀에서의 강제대류 열전달)

  • 조진호;이상균
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.69-76
    • /
    • 1987
  • A conjugate conduction-convection analysis has been made for a plate fin which exchanges heat with its fluid environment by forced convection. The analysis is based on a one- dimensional model for the plate fin whereby the transient heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum, and energy in the fluid boundary layer adjacent to the fin. The forced convection heat transfer coefficient is not specified in advance but is one the results of the numerical solutions. Numerical results of the overall heat transfer rate, the local heat transfer coefficient, the local heat flux, the fin efficiency and the fin surface temperature distribution for Pr=0.7 are presented for a wide range of operating conditions.

  • PDF

NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM (엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구)

  • Bae, Y.S.;Yoo, G.J.;Choi, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

Statistical Analysis of Determining Optimal Monitoring Time Schedule for Crop Water Stress Index (CWSI) (작물 수분 스트레스 지수 산정을 위한 최적의 관측 간격과 시간에 대한 통계적 분석)

  • Choi, Yonghun;Kim, Minyoung;Oh, Woohyun;Cho, Junggun;Yun, Seokkyu;Lee, Sangbong;Kim, Youngjin;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.73-79
    • /
    • 2019
  • Continuous and tremendous data (canopy temperature and meteorological variables) are necessary to determine Crop Water Stress Index (CWSI). This study investigated the optimal monitoring time and interval of canopy temperature and meteorological variables (air temperature, relative humidity, solar radiation and wind speed) to determine CWSIs. The Nash-Sutcliffe model efficiency coefficient (NSE) was used to quantitatively describe the accuracy of sampling method depending upon various time intervals (t=5, 10, 15, 20, 30 and 60 minutes) and CWSIs per every minute were used as a reference. The NSE coefficient of wind speed was 0.516 at the sampling time of 60 minutes, while the ones of other meteorological variables and canopy temperature were greater than 0.8. The pattern of daily CWSIs increased from 8:00 am, reached the maximum value at 12:00 pm, then decreased after 2:00 pm. The statistical analysis showed that the data collection at 11:40 am produced the closest CWSI value to the daily average of CWSI, which indicates that just one time of measurement could be representative throughout the day. Overall, the findings of this study contributes to the economical and convenient method of quantifying CWSIs and irrigation management.

A study on the thermal performance of all glass evacuated tube collector and refrigerator using solar energy (태양열을 이용한 이중진공관형 집열기와 냉동기의 열성능에 관한 연구)

  • Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.324-331
    • /
    • 2013
  • All evacuated tube collector is being constantly studied since it can reduce the conductive heat loss in absorber by using vacuum technology and has advantage of heat transport capacity and quick thermal response in comparatively small temperature difference. This study investigated the dynamic thermal performance of the solar collector with the control condition of solar irradiance and fluid temperature by using performance experimental apparatus which is combined with solar collector and refrigerator, examined the thermal characteristics in definite temperature range of fluid in constant temperature tank by simultaneously measuring refrigerating performance. As a result of it, I deducted the related equation of collector efficiency and found that mean collector efficiency has increased through quick heat transfer characteristics according to increase of outdoor temperature and irradiance in case of outlet temperature of constant temperature tank $22^{\circ}C$ when set outlet temperature of solar collector $25^{\circ}C$ with outlet temperature of constant temperature tank $18^{\circ}C$ & $22^{\circ}C$. Also COP of refrigerator was acquired value of 6.2~7.1 at outlet temperature of constant temperature tank $18^{\circ}C$.

Fundamental Heat Analysis about the Thermoelectric Generation System Using the Waste Heat of Exhaust Gas from Ship (선박의 배기가스 폐열을 활용한 열전발전시스템에 관한 기초 열해석)

  • Kim, Myoung-Jun;Ga, Gwang-Jin;Chea, Gyu-Hoon;Kim, In-Seup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.583-592
    • /
    • 2016
  • IMO (International Maritime Organization) in the UN (United Nations) set up that aim at reducing $CO_2$ emission from ship by up to 30 percent until 2030. The final purpose of this study is the development of marine thermoelectric generation system using waste heat from vessel of internal combustion engines. Before the development of marine thermoelectric generation system, this paper carried out the fundamental heat analysis of marine thermoelectric generation system. It was able to obtain the valuable results about the efficiency improvement of the thermoelectric generation system. The results is as follows : 1) It was confirmed that the efficiency of thermoelectric generation system improves to 8.917 % with increasing the temperature difference of peltier module by reducing the temperature difference between peltier module and heat source at the hot side. 2) System efficiency according to change in the external load resistance was confirmed that the change width of about 6 % which does not significantly occur. 3) System efficiency in the case stainless steel at the same condition is 8.707 %. System efficiency could be confirmed that the stainless steel is higher than duralumin (8.605 %), copper (8.607 %).

Analysis on the Effect of Thermal Performance with Various Load Patterns for Solar Hot Water Heating System

  • Kim, Byoung-Gi;Jang, Hwan-Young;Chung, Kyung-Taek;Suh, Jeong-Se
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.108-113
    • /
    • 2007
  • The performance of a solar water heater incorporating evacuated tubes was evaluated using a transient simulation program, TRNSYS. Simulations were performed for $60^{\circ}C$ of hot water load temperature and for 280 liter of daily hot water volumes and three 400 liter of storage tank volumes. Three patterns of daily hot water consumption profile were used in the present study (morning, lunch and evening). The results show that the increase in solar fraction depends on the load profile, as well as the collector efficiency coefficient. Hot water draw profile has a large effect on the performance of the SDHWS, the morning load profile has the highest solar fraction. The annual solar fraction of the system, at the weather conditions of Jinju is approximately 84% at lunch load pattern, the 280 kg of load volume, 400 kg of tank volume and the $60^{\circ}C$ of load temperature.