Browse > Article
http://dx.doi.org/10.5916/jkosme.2013.37.1.9

Convective heat transfer characteristics of diamond nanofluid produced by matrix synthetic method  

Son, Kwun (한국해양대학교 대학원 기계공학과)
Lee, Jung-Seok ((주)네오엔비즈)
Park, Tae-Hee ((주)네오엔비즈)
Park, Kweon-Ha (한국해양대학교 기계에너지시스템공학부)
Abstract
The effective use and management of energy resources has been issued to solve the global warming problem and petrolium price increase. To improve the energy efficiency of a heat exchanger, a new countermeasure is required and the heat transfer research of nano-fluids as a new working fluid is needed. This study was carried out with increasing the Reynolds number and the vol% of nano-fluids in the inlet temperature of $25^{\circ}C$ and $50^{\circ}C$. As the result, the higher the entrance temperature is, the higher the convective heat transfer coefficient is.
Keywords
Diamond nanofluid; Heat transfer coefficient; Matrix synthetic method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. S. Lyu, "Vehicle fuel economy improvement by studies on the engine cooling and ancilliaries system of the heavy duty engine," Transaction of the Korean Society of Automotive Engineers, vol. 15, no. 3, pp. 79-84, 2007.   과학기술학회마을
2 S. U. S. Choi, Developments and Applications of Non-Newtonian Flows, Fluid Engineering Division vol. 231/ Material Division, vol. 66, P. 99, 1995.
3 J. A. Easterman, S. U. S. Choi, S. Li, and L. J. Thompson, "Enhanced thermal conductivity through the development of nanofluids," Symposium proceedings, Nanophase and Nanocomposite Mater. II, vol. 457, pp. 2-11. 1997.
4 S. U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles, in developments applications of non newtonian flows." D. A. Singer, and H. P. Wang, American Society or Mechanical Engineers, New York, Fluid Engineering Division vol. 231, Material Division, vol 66, pp. 99-105. 1995.
5 S. Lee, S. U. S Choi, S. Li, and J. A Esterman, "Measuring thermal conductivity of fluids containing oxide nanoparticles", Journal of Heat Transfer 121, pp. 280-289. 1999.   DOI
6 K. -H. Park, J. -A. Lee, and H. -M Kim, "Heat conductivity test and conduction mechanism of nanofluid", Journal of the Korean Society of Maritime Engineering, vol. 32, no. 6, pp. 862-868, 2008 (in Korean).   과학기술학회마을   DOI   ScienceOn
7 H. Xie, J. Wang, T. Xi, F. Ai, and Q. Wu, "Thermal conductivity enhancement of suspensions containing nanosized alumina particles", Journal of Applied Physics, vol. 91, no. 7, pp. 4568-4572, 2002.   DOI   ScienceOn
8 J. A. Esterman, S. U. S. Choi, S. Li, W. Yu, L, and J. Thompson, "Anomalously increased effective thermal conductivities of ethylene glycole- based nanofluids containing copper nanoparticles", Applied Physics Letters, vol. 78, no. 6, pp. 718-720. 2001.   DOI   ScienceOn
9 S. -W. Kang, C. -H. Lee, and S. -H. Kim, "Effect of nanofluid on heat transfer in double-pipe heat exchanger system", Journal of the Korea Society for Energy Engineering, pp. 159-164, 2004 (in Korean).
10 S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, "Temperature dependence of thermal conductivity enhancement for nanofluids", Journal of Heat Transfer, vol. 125, pp. 567-574, 2003.   DOI   ScienceOn
11 C. H. Li and G. P. Peterson, "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)", Journal of Applied Physics, vol. 99, pp. 084314-1-084314-8, 2006.   DOI   ScienceOn
12 M. Biercuk, M. Llaguno, J. Hyun, M. Radosavljevic, A. Johnson, and J. Fischer, "Carbon nanotube composites for thermal management", Applied Physical Letters, vol. 80, pp. 2767-2769, 2002.   DOI   ScienceOn
13 C. H. Chon and K. D. Kihm, "Thermal conductivity enhancement of nanofluids by Brownian motion", Journal of Heat Transfer, vol. 127, p. 810, 2005.   DOI   ScienceOn
14 S. U. S Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, "Anomalous thermal conductivity enhancement in nano-tube suspensions", Applied Physical Letters, vol. 79, pp. 2252-2254, 2001.   DOI   ScienceOn
15 H. Xie, H. Lee, W. Youn, and M. Choi, "Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities", Journal of Applied Physics, vol. 94, pp. 4967-4971, 2003.   DOI   ScienceOn
16 D. Wen and Y. Ding, "Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)", Journal of Thermophysics and Heat Transfer, vol. 18, no. 4, pp. 481-485, 2004.   DOI   ScienceOn
17 M.-S. Liu, M. Ching-Cheng Lin, I. T. Huang, and C. -C. Wang, "Enhancement of thermal conductivity with carbon nanotube for nanofluids", International Communications in Heat Transfer, vol. 32, no. 9, pp. 1202-1210, 2005.   DOI   ScienceOn
18 W. yu, D. M. France, J. L. Routbort, and S. U. S Choi, "Review and comparison of nanofluid thermal conductivity and heat transfer enhancements", Heat Transfer Engineering, vol. 29, no. 5, pp. 432-460, 2008.   DOI   ScienceOn
19 X. Q. Wang and A. S. Mujumdar, "Heat transfer characteristics of nanofluids : a review" International Journal of Thermal Sciences, vol. 46, pp. 1-19. 2007.   DOI   ScienceOn
20 S. M. S. Murshed, K. C. Leong, and C. Yang, "Thermophysical and electrokinetic properties of nanofluids - A critical review", Thermal Engineering, vol. 28, pp. 2109-2125, 2008.   DOI   ScienceOn
21 Frank P. Icropera and David P. DeWitt, Introduction to Heat Transfer 5th Eds, John Wiley & Sons, New York, 2002.
22 M. Hojjat, S. Gh. Etemad, R. Bagheri, and J. Thibault, "Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperture", Heat Mass Transfer, vol. 47, pp. 203-209, 2011.   DOI