DOI QR코드

DOI QR Code

Convective heat transfer characteristics of diamond nanofluid produced by matrix synthetic method

매트릭스합성 분산법에 의해 제조된 다이아몬드 나노유체의 대류열전달 특성

  • 손권 (한국해양대학교 대학원 기계공학과) ;
  • 이정석 ((주)네오엔비즈) ;
  • 박태희 ((주)네오엔비즈) ;
  • 박권하 (한국해양대학교 기계에너지시스템공학부)
  • Received : 2012.07.27
  • Accepted : 2013.01.17
  • Published : 2013.01.31

Abstract

The effective use and management of energy resources has been issued to solve the global warming problem and petrolium price increase. To improve the energy efficiency of a heat exchanger, a new countermeasure is required and the heat transfer research of nano-fluids as a new working fluid is needed. This study was carried out with increasing the Reynolds number and the vol% of nano-fluids in the inlet temperature of $25^{\circ}C$ and $50^{\circ}C$. As the result, the higher the entrance temperature is, the higher the convective heat transfer coefficient is.

지구 온난화 현상과 유가급등에 따른 에너지 부족 현상은 생산된 에너지의 효율적인 사용과 관리 문제를 부각시켰다. 이에 열교환기의 에너지 효율 향상을 위한 새로운 방안이 요구되었고 새로운 작동유체로서 나노유체의 열전달 특성 연구가 필요한 실정이다. 나노유체의 전도열전달특성의 경우 많은 선행연구에서 예측 가능한 패턴을 보이며 증가한 반면, 대류열전달 특성의 경우 특성이 명확하지 않아 추가적인 연구가 필요한 실정이다. 본 연구에서는 $25^{\circ}C$, $50^{\circ}C$의 입구온도 조건에서 레이놀즈수와 나노유체의 vol%를 증가시키며 실험을 수행하였다. 수행 결과 레이놀즈수와 vol%, 입구 온도가 증가할수록 대류열전달계수가 향상되었다.

Keywords

References

  1. M. S. Lyu, "Vehicle fuel economy improvement by studies on the engine cooling and ancilliaries system of the heavy duty engine," Transaction of the Korean Society of Automotive Engineers, vol. 15, no. 3, pp. 79-84, 2007.
  2. S. U. S. Choi, Developments and Applications of Non-Newtonian Flows, Fluid Engineering Division vol. 231/ Material Division, vol. 66, P. 99, 1995.
  3. J. A. Easterman, S. U. S. Choi, S. Li, and L. J. Thompson, "Enhanced thermal conductivity through the development of nanofluids," Symposium proceedings, Nanophase and Nanocomposite Mater. II, vol. 457, pp. 2-11. 1997.
  4. S. U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles, in developments applications of non newtonian flows." D. A. Singer, and H. P. Wang, American Society or Mechanical Engineers, New York, Fluid Engineering Division vol. 231, Material Division, vol 66, pp. 99-105. 1995.
  5. S. Lee, S. U. S Choi, S. Li, and J. A Esterman, "Measuring thermal conductivity of fluids containing oxide nanoparticles", Journal of Heat Transfer 121, pp. 280-289. 1999. https://doi.org/10.1115/1.2825978
  6. K. -H. Park, J. -A. Lee, and H. -M Kim, "Heat conductivity test and conduction mechanism of nanofluid", Journal of the Korean Society of Maritime Engineering, vol. 32, no. 6, pp. 862-868, 2008 (in Korean). https://doi.org/10.5916/jkosme.2008.32.6.862
  7. H. Xie, J. Wang, T. Xi, F. Ai, and Q. Wu, "Thermal conductivity enhancement of suspensions containing nanosized alumina particles", Journal of Applied Physics, vol. 91, no. 7, pp. 4568-4572, 2002. https://doi.org/10.1063/1.1454184
  8. J. A. Esterman, S. U. S. Choi, S. Li, W. Yu, L, and J. Thompson, "Anomalously increased effective thermal conductivities of ethylene glycole- based nanofluids containing copper nanoparticles", Applied Physics Letters, vol. 78, no. 6, pp. 718-720. 2001. https://doi.org/10.1063/1.1341218
  9. S. -W. Kang, C. -H. Lee, and S. -H. Kim, "Effect of nanofluid on heat transfer in double-pipe heat exchanger system", Journal of the Korea Society for Energy Engineering, pp. 159-164, 2004 (in Korean).
  10. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, "Temperature dependence of thermal conductivity enhancement for nanofluids", Journal of Heat Transfer, vol. 125, pp. 567-574, 2003. https://doi.org/10.1115/1.1571080
  11. C. H. Li and G. P. Peterson, "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)", Journal of Applied Physics, vol. 99, pp. 084314-1-084314-8, 2006. https://doi.org/10.1063/1.2191571
  12. C. H. Chon and K. D. Kihm, "Thermal conductivity enhancement of nanofluids by Brownian motion", Journal of Heat Transfer, vol. 127, p. 810, 2005. https://doi.org/10.1115/1.2033316
  13. S. U. S Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, "Anomalous thermal conductivity enhancement in nano-tube suspensions", Applied Physical Letters, vol. 79, pp. 2252-2254, 2001. https://doi.org/10.1063/1.1408272
  14. H. Xie, H. Lee, W. Youn, and M. Choi, "Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities", Journal of Applied Physics, vol. 94, pp. 4967-4971, 2003. https://doi.org/10.1063/1.1613374
  15. M. Biercuk, M. Llaguno, J. Hyun, M. Radosavljevic, A. Johnson, and J. Fischer, "Carbon nanotube composites for thermal management", Applied Physical Letters, vol. 80, pp. 2767-2769, 2002. https://doi.org/10.1063/1.1469696
  16. D. Wen and Y. Ding, "Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)", Journal of Thermophysics and Heat Transfer, vol. 18, no. 4, pp. 481-485, 2004. https://doi.org/10.2514/1.9934
  17. M.-S. Liu, M. Ching-Cheng Lin, I. T. Huang, and C. -C. Wang, "Enhancement of thermal conductivity with carbon nanotube for nanofluids", International Communications in Heat Transfer, vol. 32, no. 9, pp. 1202-1210, 2005. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005
  18. W. yu, D. M. France, J. L. Routbort, and S. U. S Choi, "Review and comparison of nanofluid thermal conductivity and heat transfer enhancements", Heat Transfer Engineering, vol. 29, no. 5, pp. 432-460, 2008. https://doi.org/10.1080/01457630701850851
  19. X. Q. Wang and A. S. Mujumdar, "Heat transfer characteristics of nanofluids : a review" International Journal of Thermal Sciences, vol. 46, pp. 1-19. 2007. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
  20. S. M. S. Murshed, K. C. Leong, and C. Yang, "Thermophysical and electrokinetic properties of nanofluids - A critical review", Thermal Engineering, vol. 28, pp. 2109-2125, 2008. https://doi.org/10.1016/j.applthermaleng.2008.01.005
  21. M. Hojjat, S. Gh. Etemad, R. Bagheri, and J. Thibault, "Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperture", Heat Mass Transfer, vol. 47, pp. 203-209, 2011. https://doi.org/10.1007/s00231-010-0710-7
  22. Frank P. Icropera and David P. DeWitt, Introduction to Heat Transfer 5th Eds, John Wiley & Sons, New York, 2002.

Cited by

  1. The effect of lubricant containing diamond nano-powder on performance vol.38, pp.9, 2014, https://doi.org/10.5916/jkosme.2014.38.9.1039