• Title/Summary/Keyword: Effects of body shape

Search Result 226, Processing Time 0.031 seconds

Dynamic Tumble Stability Analysis of Seabed Walking Robot in Forward Incident Currents (전방 입사조류에 대한 해저보행로봇의 동적 전복안정성 해석)

  • Jun, Bong-Huan;Shim, Hyungwon;Yoo, Seongyeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.743-749
    • /
    • 2015
  • In this paper, we describe the dynamic tumble-stability analysis of a seabed-walking robot named Crabster (CR200) in forward-incident currents. CR200 is designed to be operated in tidal-current conditions, and its body shape is also designed to minimize hydrodynamic resistances considering hydrodynamics. To analyze its tumble stability, we adopt the dynamic stability margin of a ground-legged robot and modify the definition of the margin to consider tidal-current effects. To analyze its dynamic tumble stability, we use the estimated hydrodynamic forces that act on the robot in various tidal-current conditions, and analyze the dynamic tumble-stability margin of the robot using the estimated results obtained for the various tidal-current conditions. From the analyses, we confirm the improved tumble stability of the robot according to the movement of the tumble axis caused by the supporting points of the legs.

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

A Study of Cut-Out Designs in Contemporary Fashion (현대패션에 나타난 컷 아웃 디자인에 관한 연구)

  • Kim, Sun-Young
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.1
    • /
    • pp.36-48
    • /
    • 2012
  • This study intends to provide fundamental data to develop creative high-value designs, proving that the cut-out technique, a decorative element of fashion design, can be used to express various visual effects. The author performed a literature review of such publications as Gap Press, Fashion News, and Mode & Mode from 2001S/S to 2010S/S, referring to Internet data to empirically analyze the cut-out technique in contemporary fashion. The study found that the cut-out design is effective overall, but is best suited for one-piece designs and for partial rather than whole items of clothing. The basic motif of the cut-out is a geometrical pattern based on a line, a tear, or is shapeless. The cut-out design is mostly shown as an overall pattern or as a symmetrical shape. Analysis shows that the characteristics of the contemporary fashion utilizing the cut-out technique are as follow: First, the cut-out technique exposes the curves of a woman's body in a direct or indirect way, thereby emphasizing her sexuality and maximizing the value of female beauty. Second, through the cut-out technique, we can highlight the various types of space formed by the technique and repeated patterns; we may also elaborate on single-patterned laser-cut designs, which will show that the particular surface effect of the material can strongly impact the attractiveness of the design through emphasis and decoration. Third, damaging or destroying clothes on purpose, showing surprising concepts through optical illusions, and expressing humor by ignoring existing clothing styles show our willingness to escape from traditional or obvious design ideas, as well as demonstrating individuality and playfulness.

Current Status and Consideration of Breeding Research on Olive Flounder in Korea (우리나라 넙치 육종연구에 관한 현황 및 고찰)

  • Jong Won Park;Jeong Ho Lee;Hyun Chul Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.3
    • /
    • pp.35-46
    • /
    • 2023
  • It was in the 1982 that artificial seed production research for olive flounder (Paralichthys olivaceus) farming was first conducted in Korea (Currently, National Institute of Fisheries Science, Fish Breeding Research Center). In 1985, fertilized eggs were obtained from natural olive flounder adapted to land tanks, and artificial seed production technology was established and fertilized eggs were distributed. In the late 1980s, halibut aquaculture began to prosper in land-based tank farming in Jeju Island and Busan's Gijang region, where water temperatures are relatively high in winter. Currently, aquaculture is being carried out all over the country, centering on Jeju Island and Wando, Jeollanam-do. However, olive flounder farming, which started with a small group in the 1980s, reduced genetic diversity through inbreeding over generations, resulting in side effects such as slow growth, reduced resistance to disease and environmental conditions. In order to solve these genetic problems of farmed olive flounder in Korea, the Fish Breeding Research Center of the National Institute of Fisheries Science introduced a wild-caught parent fish group to the existing aquaculture group from 2003 to 2004. Genetic diversity was secured and KingNupchi with fast growth and improved body shape was developed. In this study, the current status of breeding technology development of olive flounder, a major aquaculture breed in Korea, is reviewed and future research directions are suggested.

Infinite Elements for the Evaluation of Wave Forces (파랑하중 산정을 위한 무한요소)

  • 박우선;윤정방;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1989
  • In this paper, the concept of the infinite element is applied to the linear wave diffraction and radiation problems. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The near field region surrounding the solid body is modelled using the conventional finite elements, and the far field region is represented using the infinite elements .In order to represent the scattered wave potentials in the far field region more accurately, the infinite elements are developed using special shape functions derived from the asymptotic expressions for the analytical eigenseries solution of the scattered waves. The system matrices of the infinite elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analyses are carried out for vertical axisymmetric bodies to validate the infinite elements developed here. Comparisons with the results by other available numerical solution methods show that the present method using the infinite elements gives fairly good results. Numerical experiments are per-formed to determine the suitable location of the infinite elements and the appropriate size of the finite elements which directly affect accuracy and efficiency of the solution.

  • PDF

Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank (수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석)

  • 조진래;하세윤;이홍우;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.619-628
    • /
    • 2002
  • This paper deals with the FE analysis for the free vibration of sloshing in horizontal cylindrical tank with baffles. We use Laplace equation based on potential theory as governing equation. This problem is solved by FEM using lineal isoparametric elements. We assume that the tank as well as baffles is rigid body and by separating nodes into two at the baffle location, baffle effect is obtained by separating nodes into two at the baffle location. For the calculation of natural frequencies and mode shapes, we introduce Lanczos transformation and Jacobi iteration methods. Numerical results of the first longitudinal and transverse modes, while comparing with literature cited, are very good. In order for the baffle effects on the free vibration of sloshing, various combinations of baffle parameters, which are location, inner diameter and number, are examined.

A Study on the Analysis of Radiation Dose for Thermoplastic Material and 3D Print Filament Materials (열가소성 플라스틱 재질과 3D 프린트 필라멘트 재질에 대한 방사선량 분석에 관한 연구)

  • Lee, Dong-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.181-189
    • /
    • 2021
  • This study is a prior research to manufacture a thermoplastic mask, which is a fixture used in radiation therapy, by 3D printing. It proceeded to analyze the filament material that can replace the thermoplastic. Among the commercially available filament materials, a material having similar characteristics to that of a thermoplastic mask was selected and the radiation dose was compared and analyzed. The experiment used Monte Carlo simulation. The shape in which the mask fixed the head was simulated for the ICRU sphere. The photon fluence was calculated at the skin Hp (0.07), the lens Hp (3), and the whole body Hp (10) by applying a thermoplastic plastic material and a filament material. As a result, when looking at the relative dose based on the thermoplastic plastic material, the difference was approximated within 4%. The material showing the most similar dose was PA-nylon. In selecting an appropriate filament material, it should be selected by comprehensively considering various conditions such as economical efficiency and radiation effects. It is thought that the results of this study can be used as basic data.

Fine Structural Modification of Mouse Ovarian Tissue by Irradiation of 6 MeV LINAC Radiation (6 MeV LINAC 방사선 조사에 의한 생쥐 난소조직의 미세구조 변화)

  • Yoon, Chul-Ho;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.117-130
    • /
    • 2003
  • This research investigates the fine structural as well as the morphological changes of the mouse ovarian tissue after irradiation of various dose rates of 6 MeV LINAC radiation. The normal structure of the ovarian tissue is consisted of various stages of follicles including primordial and growing follicles, and ovarian stromal connectives. When we observed the ovarian tissues irradiated with a dose rate of 200 cGy/min using light and electron microscopes, granular cells in growing follicles are in irregular shape unlike normal follicles. Small segments of cells scattered in follicular antrum among granular cells. We could observe neutrophils and macrophages around the segments, which means the cells already got in the process of decease owing to the effects radiation. With coincident to the increase of the dose rate of x-ray irradiation as 400 or 600 cGy/min, the mature follicles appeared as an irregular form and the granular cells surrounding oocyte also deformed comparing to their normal counterparts. The granulosa cells within mature follicle are already occurred necrotic change and apoptosis. The nuclei in some cells got so fragmented that the segments formed the shape of a horseshoe or scattered in small and condensed pieces. All the cells at a granular layer irradiated with a dose rate of 600 cGy/min show typical characteristics of apoptosis. The neutrophils involved in inflammatory reaction appear evidently in follicular antrum of growing follicles, and macrophage scattered with residual and apoptotic bodies.

Limitations of neurobiological approach convergent to neuropsychiatry: DCD and two visual systems theory (신경정신학에 융복합되는 신경생물학적 접근법의 한계점: 발달성 협응장애와 두 시각 이론에 관한 종설)

  • Lee, Young-Lim
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.225-234
    • /
    • 2015
  • Neurobiological approach helps to resolve the mind-body dualism and develop new assessment and treatment approaches in psychiatry. However, it could be a problem to place too much emphasis on certain aspects of neurobiology, specifically structural neuroanatomy, because of the complexity or comorbidity of neuropsychiatric disorders. Developmental Coordination Disorder (DCD), for instance, is generally related to problems in motor skills and this movement disability is often related to perception. One account, two visual systems theory, relied on functional distinction in brain; ventral stream is responsible for visual recognition, and dorsal stream is responsible for the guidance of actions. However, Studies are now showing that shape perception is relevant to visually guided action, such as reaching-to-grasp an object. In this article, I reviewed fundamental findings of two-visual system theory and suggested problems of visually guided action to consider what shape perception implies for the two visual systems. Questions raised highlight possible limitations of adopting a structural neuroanatomical approach to account for perception and action effects, and by extent related psychiatric conditions such as DCD. In conclusion, neurobiological approach converging to neuropsychiatry, while useful, would be limited if it focuses too much on anatomical distinction.

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors (CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.129-138
    • /
    • 2021
  • This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.