DOI QR코드

DOI QR Code

Current Status and Consideration of Breeding Research on Olive Flounder in Korea

우리나라 넙치 육종연구에 관한 현황 및 고찰

  • Jong Won Park (Genetics and Breeding Research Center, National Institute of Fisheries Science) ;
  • Jeong Ho Lee (Genetics and Breeding Research Center, National Institute of Fisheries Science) ;
  • Hyun Chul Kim (Genetics and Breeding Research Center, National Institute of Fisheries Science)
  • 박종원 (국립수산과학원 육종연구센터) ;
  • 이정호 (국립수산과학원 육종연구센터) ;
  • 김현철 (국립수산과학원 육종연구센터)
  • Received : 2023.09.11
  • Accepted : 2023.10.27
  • Published : 2023.10.30

Abstract

It was in the 1982 that artificial seed production research for olive flounder (Paralichthys olivaceus) farming was first conducted in Korea (Currently, National Institute of Fisheries Science, Fish Breeding Research Center). In 1985, fertilized eggs were obtained from natural olive flounder adapted to land tanks, and artificial seed production technology was established and fertilized eggs were distributed. In the late 1980s, halibut aquaculture began to prosper in land-based tank farming in Jeju Island and Busan's Gijang region, where water temperatures are relatively high in winter. Currently, aquaculture is being carried out all over the country, centering on Jeju Island and Wando, Jeollanam-do. However, olive flounder farming, which started with a small group in the 1980s, reduced genetic diversity through inbreeding over generations, resulting in side effects such as slow growth, reduced resistance to disease and environmental conditions. In order to solve these genetic problems of farmed olive flounder in Korea, the Fish Breeding Research Center of the National Institute of Fisheries Science introduced a wild-caught parent fish group to the existing aquaculture group from 2003 to 2004. Genetic diversity was secured and KingNupchi with fast growth and improved body shape was developed. In this study, the current status of breeding technology development of olive flounder, a major aquaculture breed in Korea, is reviewed and future research directions are suggested.

Keywords

References

  1. Carvalho GR, Hauser L. (1994). Molecular genetics and the stock concept in fisheries. Rev Fish Biol Fish 4:326-350. https://doi.org/10.1007/BF00042908
  2. Choe MK, Yang SG, Won SH, Park CJ, Han SJ, Yeo IK. (2009). Estimation of genetic parameters for growth-related traits in 9-month old of two Korean abalone subspecies Haliotis discus hanni and H. discus, by using multiple traits of animal model. Korean J Fish Aquat Sci 42:591-599.
  3. Davidson J, Summerfelt S, Espmark AMO, Mota VC, Marancik D. Earley RL, Snead A, Good C. (2021). Effects of ozone on post-smolt Atlantic salmon (Salmo salar) performance, health, and maturation in freshwater recirculation aquaculture systems. Aquaculture 533:1-12.
  4. Duncan NJ, Bromage N. (1998). The effect of different periods of constant short days on smoltification in juvenile Atlantic salmon (Salmo salar). Aquaculture 168:369-386. https://doi.org/10.1016/S0044-8486(98)00363-9
  5. Endal HP, Taranger GL, Stefansson SO, Hansen T. (2000). Effects of continuous additional light on growth and sexual maturity in Atlantic salmon, Salmo salar, reared in seacages. Aquaculture 191:337-349. https://doi.org/10.1016/S0044-8486(00)00444-0
  6. Gjerde B, Terjesen BF, Barr Y, Lein I, Thorland I. (2004). Genetic variation for juvenile growth and survival in Atlanticcod Gadus morhua. Aquaculture 236:167-177. https://doi.org/10.1016/j.aquaculture.2004.03.004
  7. Herbinger CM, Doyle RW, Pitman ER, Paquet D, Mesa KA, Morris DB, Wright JM, Cook D. (1995). DNA fingerprint analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout. Aquaculture 137:245-256. https://doi.org/10.1016/0044-8486(95)01109-9
  8. Hwang JW, Myeong JI. (2010). An economic effect of the selective breeding program on the oliver flounder aquaculture. J Fish Bus Adm 41:113-128.
  9. Jonsson N, Hansen LP, Jonsson B. (1994). Juvenile experience influences timing of adult river ascent in Atlantic salmon. Animal Behaviour 48:740-742. https://doi.org/10.1006/anbe.1994.1295
  10. Kim HC, Noh JK, Lee JH, Kim JH, Park CJ, Kang JH, Kim KK, Lee JG, Myeong JI. (2008). Estimation of genetic parameters and reproductivity test of genetic evaluation for growthrelated traits of olive flounder Paralichthys olivaceus at 180 days of age. J Aquaculture 21:317-324.
  11. Kim HC, Noh JK, Lee JH, Park CJ, Min BH, Kim KK, Kim JH, Lee JG, Myeong JI. (2011). Estimation of genetic parameters of growth-related traits from 11-month-old olive flounder Paralichthys olivaceus base population in which wild flounder broodstocks were introduced. J Anim Sci Technol 53:99-106. https://doi.org/10.5187/JAST.2011.53.2.99
  12. Lucas T, Macbeth M, Degnan SM, Knibb W, Degnan BM. (2006). Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture 259:146-152. https://doi.org/10.1016/j.aquaculture.2006.05.039
  13. Mathilde DN, Marc V, Alain V, Olivier M, Pierrick H, Herve C, Beatrice C. (2007). Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture 275:81-87.
  14. Neff BD. (2001). Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus). J. Heredity 92:111-119. https://doi.org/10.1093/jhered/92.2.111
  15. NFRDI (National Fisheries Research and Development Institute). 2006. Standard Manual of Olive Flounder Culture. Haein, Busan, Korea.
  16. Norris AT, Bradley DG, Cunningham EP. (2000). Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar ) using microsatellite markers. Aquaculture 182:73-83. https://doi.org/10.1016/S0044-8486(99)00247-1
  17. Panya SL, Antti K, Marie L, Han AM. (2017). Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single‑step genomic evaluation. Genet Sel Evol 2017;49:33.
  18. Park JW, Lee DI, Jung HS, Kim JL, Yang HR, Lee JH. (2021). Estimation of genetic parameters and improvements for growth traits of selected olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 54:974-981.
  19. Park JW, Lee DI, Jung HS, Kim JL, Yang HR, Lee JH. (2022). Estimation of Genetic Parameter for Growth Traits of Olive Flounder Paralichthys olivaceus on the 8th Generation of Selective Breeding Using Multiple Traits Animal Model. Korean J Fish Aquat Sci 55(5):549-556.
  20. Sonesson A, Odegard J, Ronnegard L. Genetic heterogeneity of withinfamily variance of body weight in Atlantic salmon (Salmo salar). Genet Sel Evol. 2013;45:41.
  21. Refstie T. (1990). Application of breeding schemes. Aquaculture 85:163-169. https://doi.org/10.1016/0044-8486(90)90015-F
  22. Zheng H, Zhang G, X Liu X. Guo. (2006). Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck(1819). Aquaculture 255:579-585. https://doi.org/10.1016/j.aquaculture.2005.11.037