• Title/Summary/Keyword: Effective atomic number

Search Result 89, Processing Time 0.023 seconds

Measurement of CT Numbers for Effective Atomic Number And Physical Density of Compound (화합물의 물리적 밀도와 유효원자번호에 대한 CT수 측정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2021
  • In the AAPM CT performance phantom, there is little data on the CT number of the effective atomic number and physical density corresponding to each peg and water of the CT number calibration insert. Therefore, the necessity of documentation was raised.The purpose of this study is to calculate the effective atomic number for each peg and water of the CT number calibration insert in the AAPM CT performance phantom, and to measure the CT number for the calculated effective atomic number and physical density for comparative analysis.In order to obtain CT number data on the effective atomic number and physical density of each peg and water from the CT number calibration insert of the AAPM CT performance phantom, the effective atomic number for each peg and water was first calculated. Then, CT slices were obtained by scanning the CT number calibration with a CT scanner. CT numbers were measured for each peg and water in the central CT slice. As a result, the CT numbers for the effective atomic number showed a nonlinear pattern of repeating the increase and decrease as the effective atomic number increased. In addition, the CT numbers for physical density showed a nonlinear pattern of repeating the increase and decrease as the physical density increased.

A Study on the Possibility of Pancreas Detection through Extraction of Effective Atomic Number using a Simulation such as Dual-energy CT (이중에너지 CT와 같은 시뮬레이션을 이용한 유효원자번호 추출을 통한 췌장 검출 가능성 연구)

  • Son, Ki-Hong;Lee, Soo-Yeul;Chung, Myung-Ae;Kim, Dae-Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.537-543
    • /
    • 2022
  • The purpose of this simulation study was to evaluate the possibility of pancreas detection through effective atomic number information using dual-energy computed tomography(CT). The effective atomic number of 10 tissue-equivalent materials were estimated through stoichiometric calibration. For stoichiometric calibration, HU values at low-energy (80 kV) and high-energy (140 kV) for 10 tissue-equivalent materials were used. Based on this method, the effective atomic number image of the tissue-equivalent material was extracted through an iterative algorithm. According to the results, the attenuation ratio in accordance with the effective atomic number was estimated to have an R2 value of 0.9999, and the effective atomic number of Pancreas, Water, Liver, Blood, Spongiosa, and Cortical bone was overall within 1% accuracy compared to the theoretical value. Conventional pancreatic cancer examination uses a contrast medium, so there is a possibility of potential side effects of the contrast medium. In order to solve this problem, it is thought that it will be possible to contribute to an accurate and safe examination by extracting the effective atomic number using dual-energy CT without contrast enhancement. Based on this study, future research will be conducted on the detection of pancreatic cancer using the HU value of pancreatic cancer based on clinical images.

Experimental investigation of effective atomic numbers for some binary alloys

  • Sharma, Renu;Sharma, J.K.;Kaur, Taranjot;Singh, Tejbir;Sharma, Jeewan;Singh, Parjit S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1571-1574
    • /
    • 2017
  • In the present work, the gamma ray backscattering technique was used to determine the effective atomic numbers for certain binary alloys. With the help of a muffle furnace, the binary alloys were synthesized using the melt quenching technique with different compositions of $_{82}Pb$, $_{50}Sn$, and $_{30}Zn$. The intensity distribution of backscattered photons from radioactive isotope $^{22}Na$ (511 keV) was recorded with the help of GAMMARAD5 [$76mm{\times}76mm$ NaI(Tl) scintillator detector] and analyzed as a function of both atomic number and thickness of the target material. The effective atomic numbers for the same binary alloys were also computed theoretically using the atomic to electronic cross-section method with the help of the mass attenuation coefficient database of WinXCom (2001). Good agreement was observed between theoretical and experimental results for the effective atomic numbers of all the selected alloys.

Determination of dosimetric dependence for effective atomic number of LDR brachytherapy seed capsule by Monte Carlo simulation

  • Berkay Camgoz;Dilara Tarim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2734-2741
    • /
    • 2023
  • Brachytherapy is a special case of radiotherapy. It should be arranged according to some principles in medical radiation applications and radiation physics. The primary principle is to use as low as reasonably achievable dose in all ionizing radiation applications for diagnostic and therapeutic treatments. Dosimetric distributions are dependent on radioactive source properties and radiation-matter interactions in an absorber medium such as phantom or tissue. In this consideration, the geometrical structure and material of the seed capsule, which surrounds a radioactive material, are directly responsible for isodose profiles and dosimetric functions. In this study, the radiometric properties of capsule material were investigated on dose distribution in a water phantom by changing its nuclear properties using the EGSnrc Monte Carlo (MC) simulation code. Effective atomic numbers of hypothetic mixtures were calculated by using different elements with several fractions for capsule material. Model 6711 brachytherapy seed was modeled by EGSnrc/Dosrcnrc Code and dosimetric functions were calculated. As a result, dosimetric parameters of hypothetic sources have been acquired in large-scale atomic number. Dosimetric deviations between the data of hypothetic seeds and the original one were analyzed. Unit dose (Gy/Particle) distributions belonging to different types of material in seed capsule have remarkably differed from the original capsule's data. Capsule type is major variable to manage the expected dose profile and isodose distribution around a seed. This study shows us systematically varied scale of material type (cross section or effective atomic number dependent) offers selective material usage in production of seed capsules for the expected isodose profile of a specific source.

Gamma Ray Shielding Study of Barium-Bismuth-Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data

  • Bagheri, Reza;Moghaddam, Alireza Khorrami;Yousefnia, Hassan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.216-223
    • /
    • 2017
  • In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and $10^{th}$ value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Effect of Improving Accuracy for Effective Atomic number (EAN) and Relative Electron Density (RED) extracted with Polynomial-based Calibration in Dual-energy CT

  • Daehong Kim;Il-Hoon Cho;Mi-jo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1017-1023
    • /
    • 2023
  • The purpose of this study was to improve the accuracy of effective atomic number (EAN) and relative electron density (RED) using a polynomial-based calibration method using dual-energy CT images. A phantom composed of 11 tissue-equivalent materials was acquired with dual-energy CT to obtain low- and high-energy images. Using the acquired dual-energy images, the ratio of attenuation of low- and high-energy images for EAN was calibrated based on Stoichiometric, Quadratic, Cubic, Quartic polynomials. EAN and RED were extracted using each calibration method. As a result of the experiment, the average error of EAN using Cubic polynomial-based calibration was minimum. Even in the RED image extracted using EAN, the error of the Cubic polynomial-based RED was minimum. Cubic polynomial-based calibration contributes to improving the accuracy of EAN and RED, and would like to contribute to accurate diagnosis of lesions in CT examinations or quantification of various materials in the human body.

Investigation on radiation shielding parameters of cerrobend alloys

  • Tellili, Borhan;Elmahroug, Youssef;Souga, Chedly
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1758-1771
    • /
    • 2017
  • In this study, to determine the most effective alloy for shielding against gamma-rays, the gamma-ray shielding parameters of six types of cerrobend alloys have been investigated. Gamma-ray interaction with the cerrobend alloys has been discussed mainly in terms of total mass attenuation coefficient (${\mu}_t$), half value layer (HVL), tenth value layer (TVL), effective atomic number ($Z_{eff}$), and effective electron density ($N_{eff}$). These parameters have been calculated by theoretical approach using the ParShield program in a photon energy range between 0.1 MeV and 100 GeV. The dependence of these parameters on the incident photon energy and chemical composition of the cerrobend alloys has been studied.

Evaluation of gamma-ray and neutron attenuation properties of some polymers

  • Kacal, M.R.;Akman, F.;Sayyed, M.I.;Akman, F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.818-824
    • /
    • 2019
  • In the present work, we determined the gamma-ray attenuation characteristics of eight different polymers(Polyamide (Nylon 6) (PA-6), polyacrylonitrile (PAN), polyvinylidenechloride (PVDC), polyaniline (PANI), polyethyleneterephthalate (PET), polyphenylenesulfide (PPS), polypyrrole (PPy) and polytetrafluoroethylene (PTFE)) using transmission geometry utilizing the high resolution HPGe detector and different radioactive sources in the energy range 81-1333 keV. The experimental linear attenuation coefficient values are compared with theoretical data (WinXCOM data). The linear attenuation coefficient of all polymers reduced quickly with the increase in energy, at the beginning, while decrease more slowly in the region from 267 keV to 835 keV. The effective atomic number of PVDC and PTFE are comparatively higher than the $Z_{eff}$ of the remaining polymers, while PA-6 possesses the lowest effective atomic number. The half value layer results showed that PTFE ($C_2F_4$, highest density) is more effective to attenuate the gamma photons. Also, the theoretical results of macroscopic effective removal cross section for fast neutrons ($\sum_{R}$) were computed to investigate the neutron attenuation characteristics. It is found that the $\sum_{R}$ values of the eight investigated polymers are close and ranged from $0.07058cm^{-1}$ for PVDC to $0.11510cm^{-1}$ for PA-6.

The Increased Use of Radiation Requires Enhanced Activities Regarding Radiation Safety Control (방사성 물질 등의 이용 증가에 따른 안전 관리 문제점 고찰)

  • Lee, Yunjong;Lee, Jinwoo;Jeong, Gyo-Seong
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.