Browse > Article
http://dx.doi.org/10.1016/j.net.2017.08.020

Investigation on radiation shielding parameters of cerrobend alloys  

Tellili, Borhan (Universite de Tunis El Manar, Faculte des Sciences de Tunis, Departement de physique, Unite de Recherche de Physique Nucleaire et des Hautes Energies, Campus Universitaire El-Manar)
Elmahroug, Youssef (Universite de Tunis El Manar, Faculte des Sciences de Tunis, Departement de physique, Unite de Recherche de Physique Nucleaire et des Hautes Energies, Campus Universitaire El-Manar)
Souga, Chedly (Universite de Carthage, Ecole Polytechnique de Tunisie)
Publication Information
Nuclear Engineering and Technology / v.49, no.8, 2017 , pp. 1758-1771 More about this Journal
Abstract
In this study, to determine the most effective alloy for shielding against gamma-rays, the gamma-ray shielding parameters of six types of cerrobend alloys have been investigated. Gamma-ray interaction with the cerrobend alloys has been discussed mainly in terms of total mass attenuation coefficient (${\mu}_t$), half value layer (HVL), tenth value layer (TVL), effective atomic number ($Z_{eff}$), and effective electron density ($N_{eff}$). These parameters have been calculated by theoretical approach using the ParShield program in a photon energy range between 0.1 MeV and 100 GeV. The dependence of these parameters on the incident photon energy and chemical composition of the cerrobend alloys has been studied.
Keywords
Cerrobend Alloys; Effective Atomic Number and Electron Density; Half Value Layer; Tenth Value Layer; Total Mass Attenuation Coefficients;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.B. Wojcick, R. Yankelevich, B.L. Werner, D.E. Lasher, Technical Note: on Cerrobend shielding for 18-22 MeV electron beams, Nonlinearity 35 (2008) 4625-4629.
2 I. Akkurt, Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy 36 (2009) 1702-1705.   DOI
3 I. Akkurt, A.M. El-Khayatt, Effective atomic number and electron density of marble concrete, J. Radioanal. Nucl. Chem. 295 (2013) 633-638.   DOI
4 Y. Elmahroug, B. Tellili, C. Souga, K. Manai, ParShield: a computer program for calculating attenuation parameters of the gamma rays and the fast neutrons, Ann. Nucl. Energy 76 (2015b) 94-99.   DOI
5 I.M. Borchardtt, J.R. Pattersont, A.H. Beddoef, G.C. Sorellf, An investigation of photonuclear reactions in Cerrobend eutectic material with an 18 MV linac, Phys. Med. Biol. 36 (1991) 649-653.   DOI
6 I.A. Brezovich, K.S. Sparks, J. Duan, A self-correcting method for improving the precision of beam blocks, J. Appl. Clin. Med. Phys. 2 (2001) 106-113.   DOI
7 Y. Elmahroug, B. Tellili, C. Souga, Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials, Ann. Nucl. Energy 75 (2015a) 268-274.   DOI
8 Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins, Ann. Nucl. Energy 63 (2013) 619-623.
9 S. Gowda, S. Krishnaveni, T. Yashoda, T.K. Umesh, R. Gowda, Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds, Pramana J. Phys. 63 (2004) 529-541.   DOI
10 G.J. Hine, The effective atomic numbers of materials for various gamma interactions, Phys. Rev. 85 (1952) 725-737.
11 J.H. Hubbell, Review of photon interaction cross section data in the medical and biological context, Phys. Med. Biol. 44 (1999) R1.   DOI
12 J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients, Int. J. Appl. Radiat. Isot. 33 (1982) 1269-1290.   DOI
13 S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods B 266 (2008) 3906-3912.   DOI
14 O. Icelli, Z. Yalcina, M. Okutana, R. Boncukcuoglub, A. Sen, The determination of the total mass attenuation coefficients and the effective atomic numbers for concentrated colemanite and Emet colemanite clay, Ann. Nucl. Energy 38 (2011) 2079-2085.   DOI
15 P. Limkitjaroenporn, J. Kaewkhao, S. Asavavisithchai, Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering, Ann. Nucl. Energy 53 (2013) 64-68.   DOI
16 L. Ma, W. Chang, M. Lau-Chin, E.M. Tate, A.L. Boyer, Using static MLC fields to replace partial transmission cerrobend blocks in treatment planning of rectal carcinoma cases, Med. Dosim. 23 (1998) 264-266.   DOI
17 Y. Mejaddem, I. Lax, A.K. Shamsuddin, Procedure for accurate fabrication of tissue compensators with high-density material, Phys. Med. Biol. 42 (1997) 415-421.   DOI
18 G. Neuner, M.M. Mohiuddin, W.N. Vander, O. Goloubeva, J. Ha, C.X. Yu, W.F. Regine, High-dose spatially fractionated GRID radiation therapy (SFGRT): a comparison of treatment outcomes with Cerrobend vs. MLC SFGRT, Int. J. Radiat. Oncol. Biol. Phys. 82 (2012) 1642-1649.   DOI