Browse > Article
http://dx.doi.org/10.1016/j.net.2016.08.013

Gamma Ray Shielding Study of Barium-Bismuth-Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data  

Bagheri, Reza (Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran)
Moghaddam, Alireza Khorrami (Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences)
Yousefnia, Hassan (Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran)
Publication Information
Nuclear Engineering and Technology / v.49, no.1, 2017 , pp. 216-223 More about this Journal
Abstract
In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and $10^{th}$ value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.
Keywords
Barium-Bismuth-Borosilicate Glass; Effective Atomic Number and Electron Density; Half Value Layer and $10^{th}$ Value Layer; Mass Attenuation Coefficient; Mean Free Path; MCNP-4C; XCOM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sh Sharifi, R. Bagheri, S.P. Shirmardi, Comparison of shielding properties for ordinary, barite, serpentine and steel-magnetite concretes using MCNP-4C code and available experimental results, Ann. Nucl. Energy 53 (2013) 529-534.   DOI
2 S.P. Shirmardi, M. Shamsaei, M. Naserpour, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data, Ann. Nucl. Energy 55 (2013) 288-291.   DOI
3 I. Akkurt, H. Akyildirim, F. Karipcin, B. Mavi, Chemical corrosion on gamma ray attenuation properties of barite concrete, J. Saud. Chem. Soc. 16 (2012) 199-202.   DOI
4 S.R. Manohara, S.M. Hanagodimath, L. Gerward, Photon interaction and energy absorption in glass: a transparent gamma ray shield, J. Nucl. Mater. 393 (2009) 465-472.   DOI
5 K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Nucl. Instrum. Meth. B 207 (2008) 944-948.
6 F. Bouzarjomehri, T. Bayat, M.H. Dashti, R.J. Ghisari, N. Abdoli, $^{60}Co\;{\gamma}$-ray attenuation coefficient of barite concrete, Iran. J. Radiat. Res. 4 (2006) 71-75.
7 S.J. Stankovic, R.D. Ilic, K. Jankovic, D. Bojovic, B. Longar, Gamma radiation absorption characteristics of concrete with components of different type materials, Acta Phys. Pol. A 117 (2010) 812-816.   DOI
8 I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401.   DOI
9 M. Kurudirek, Y. Ozdemir, O. Simsek, R. Durak, Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keVe100 GeV: a comparative study, J. Nucl. Mater. 407 (2010) 110-115.   DOI
10 A. Chahine, M. Et-Tabirou, J.L. Pascal, FTIR and Raman spectra of the $Na_2O-CuO-Bi_2O_3-P_2O_5$ glasses, Mater. Lett. 58 (2004) 2776-2780.   DOI
11 J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients and Mass Energy-absorption Coefficients 1 keV-20 MeV for Elements 1 < Z < 92 and 48 Additional Substances of Dosimetric Interest, National Institute of Standards and Physics Laboratory, NISTIR, 1995, p. 5632.
12 K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glasses containing $Bi_2O_3$, PbO and BaO: radiation shielding and optical properties, Ann. Nucl. Energy 38 (2011) 1438-1441.   DOI
13 A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, New York, 1994.
14 J.K. Shultis, R.E. Faw, An MCNP Primer, Department of Mechanical and Nuclear Engineering, Kansas State University, 2010.
15 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24.   DOI
16 C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses, Radiat. Phys. Chem. 81 (2012) 785-790.   DOI
17 N. Tsoulfanidis, S. Landsberger, Measurement and detection of radiation, fourth ed., CRC Press, Boca Raton, Florida, 2015.
18 F. Demir, G. Budak, R. Sahin, A. Karabulut, M. Oltulu, A. Un, Determination of radiation attenuation coefficients of heavyweight- and normal-weight concretes containing colemanite and barite for 0.663 MeV ${\gamma}$-rays, Ann. Nucl. Energy 38 (2011) 1274-1278.   DOI
19 I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate, Ann. Nucl. Energy 37 (2010) 910-914.   DOI
20 A. Un, Y. Sahin, Determination of mass attenuation coefficients, effective atomic and electron numbers, mean free paths and kermas for PbO, barite and some boron ores, Nucl. Instrum. Meth. B 269 (2011) 1506-1511.   DOI
21 K. Singh, H. Singh, G. Sharma, L. Gerward, A. Khanna, R. Kumar, R. Nathuram, H.S. Sahota, Gamma-ray shielding properties of CaO-SrO-$B_2O_3$ glasses, Radiat. Phys. Chem. 72 (2005) 225-228.   DOI