DOI QR코드

DOI QR Code

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M. (Physics Department, Faculty of Science, Al-Azhar University) ;
  • Ahmed, G.S.M. (Physics Department, Faculty of Science, Al-Azhar University) ;
  • Rashad, A.M. (Accelerators and Ion Sources Department, Nuclear Research Center (NRC), Atomic Energy Authority) ;
  • Salem, S.M. (Physics Department, Faculty of Science, Al-Azhar University) ;
  • Ebraheem, S. (Radiation Protection and Dosimetry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority) ;
  • Mostafa, A.G. (Physics Department, Faculty of Science, Al-Azhar University)
  • Received : 2020.07.19
  • Accepted : 2020.12.24
  • Published : 2021.06.25

Abstract

The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

Keywords

References

  1. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517, https://doi.org/10.1016/j.matchemphys.2018.04.019.
  2. A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behavior of (20+x) PbO - 10 BaO - 10 Na2O - 10 MgO - (50-x) B2O3 glasses, Phys. B Condens. Matter 552 (2019) 110-118, https://doi.org/10.1016/j.physb.2018.10.001.
  3. W.A. El-Gammal, S.M. Salem, A.S. Mahmoud, M.H. Moustafa, Eshtewi, T.Z. Abou-Elnasr, Gamma-ray shielding parameters of some sodium-borate glasses containing BaO and As2O3, Int. j. sci. Res. Sci. Eng. Tech. 3 (2017) 1144, https://doi.org/10.32628/IJSRSET1844162.
  4. A.M. Zoulfakar, A.M. Abdel-Ghany, T.Z. Abou-Elnasr, A.G. Mostafa, S.M. Salem, H.H. El-Bahnaswy, Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses, Appl. Radiat. Isot. 127 (2017) 269-274, https://doi.org/10.1016/j.apradiso.2017.05.007.
  5. A.G. Mostafa, H.A. Saudi, M.Y. Hassaan, S.M. Salem, S.S. Mohammad, Studies on the shielding properties of transparent glasses prepared from rice husk silica, Am. J. Mod. Phys. 4 (2015) 149-157, https://doi.org/10.11648/j.ajmp.20150404.11.
  6. S.U. El-Kameesy, S.A. El-Fikia, G.M. Youssef, H.A. Saudi, S.Y. El-Zaiat, W.A. Aburaia, Modified lead borosilicate glasses as gamma rays barriers, Arab J. Nucl. Sci. Appl. 51 (2018) 93-99.
  7. D.K. Gaikwad, M.I. Sayyed, Shamsan S. Obaid, AM Issa Shams, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451-458, https://doi.org/10.1016/j.jallcom.2018.06.240.
  8. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des. 307 (2016) 364-376, https://doi.org/10.1016/j.nucengdes.2016.07.029.
  9. M.I. Sayyed, A.A. Ali, H.O. Tekin, Y.S. Rammah, Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program, Appl. Phys. A 125 (2019) 445, https://doi.org/10.1007/s00339-019-2739-x.
  10. H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, ZnO-P-bO-B2O3 glasses as gamma-ray shielding materials, Nucl. Instrum. Methods Phys. Res. B 207 (2003) 257-262, https://doi.org/10.1016/S0168-583X(03)00462-2.
  11. S.U. El-Kameesy, S.Y. El-Zaiat, G.M. Youssef, H.A. Saudi, S.A. El-Fiki, W.A. Aburaia, Linear optical properties of x PbO-20 SiO 2-10 Na 2 O-(70-x) B 2 O 3 glass system, Siliconindia 11 (2019) 1505-1515, https://doi.org/10.1007/s12633-018-9970-5.
  12. Y.B. Saddeek, K.H.S. Shaaban, R. Elsaman, Atef El Taher, T.Z. Amer, Attenuation-density anomalous relationship of lead alkali borosilicate glasses, Radiat. Phys. Chem. 150 (2018) 182-188, https://doi.org/10.1016/j.radphyschem.2018.04.028.
  13. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses, Radiat. Phys. Chem. 136 (2017) 50-53, https://doi.org/10.1016/j.radphyschem.2017.03.023.
  14. F. Akman, I.H. Gecibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods, Nucl. Eng. Technol. 50 (2018) 944-949, https://doi.org/10.1016/j.net.2018.05.007.
  15. S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F.A. Balogun, Investigation of gamma radiation shielding capability of two clay materials, Nucl. Eng. Technol. 50 (2018) 957-962, https://doi.org/10.1016/j.net.2018.05.003.
  16. Shamsan S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (2018) 11-12, https://doi.org/10.1080/10420150.2018.1505890, 900-914.
  17. Shamsan S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94, https://doi.org/10.1016/j.radphyschem.2018.02.026.
  18. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. NonCryst. Solids 503 (2019) 158-168, https://doi.org/10.1016/j.jnoncrysol.2018.09.038.
  19. V.V. Awasarmol, D.K. Gaikwad, S.S. Obaid, P.P. Pawar, Gamma radiation studies on organic nonlinear optical materials in the energy range 122-1330 keV, Proc. Natl. Acad. Sci. India Sect. A (Phys. Sci.): Phys. Sci. 90 (2020) 839-844, https://doi.org/10.1007/s40010-019-00636-1.
  20. Said M. Kassem, A.M. Rashad, G.S.M. Ahmed, Ramy Amer Fahim, S.M. Salem, S. Ebraheem, A.G. Mostafa, A.I. Helal, Spectroscopic analysis of irradiated natural quartz and ESR dating aspects, Arab J. Nucl. Sci. Appl. 53 (2020) 197-209, https://doi.org/10.21608/ajnsa.2020.22502.1321.
  21. K.J. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glasses containing Bi2O3, PbO and BaO: radiation shielding and optical properties, Ann. Nucl. Energy 38 (2011) 1438-1441, https://doi.org/10.1016/j.anucene.2011.01.031.
  22. M.C. Ersundu, A.E. Ersundu, M.I. Sayyed, Evaluation of physical, structural properties and shielding parameters for K2O-WO3-TeO2glasses for gamma ray shielding applications, J. Alloys Compd. 714 (2017) 278-286, https://doi.org/10.1016/j.jallcom.2017.04.223.
  23. N.F. Mott, E.A. Davies, Electronic Processes in Non-crystalline Materials, Oxford University Press, 2012.
  24. S.H. Alazoumi, S.A. Aziz, R. El-Mallawany, U.S.A. Aliyu, H.M. Kamari, M.H.M.M. Zaid, K.A. Matori, A. Ushah, Optical properties of zinc lead tellurite glasses, Results Phys 9 (2018) 1371-1376, https://doi.org/10.1016/j.rinp.2018.04.041.
  25. A.S. Hassanien, I.M. El Radaf, A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te40 bulk glasses and thin films, J. Alloys Compd. 849 (2020) 156718, https://doi.org/10.1016/j.jallcom.2020.156718.
  26. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO-BaO-P2O5 glass system, Nucl. Eng. Des. 285 (2015) 31-38, https://doi.org/10.1016/j.nucengdes.2014.12.033.
  27. A. Saeed, Y. Elbashar, S.U. El Khameesy, A novel barium borate glasses for optical applications, Siliconindia 10 (2018) 569-574, https://doi.org/10.1007/s12633-016-9492-y.
  28. S. Singh, A. Kumar, C. Singh, K.S. Thind, Gurmel S. Mudahar, Effect of finite sample dimensions and total scatter acceptance angle on the gamma ray buildup factor, Ann. Nucl. Energy 35 (2008) 2414-2416, https://doi.org/10.1016/j.anucene.2008.08.008.
  29. S. Singh, A. Kumar, K.S. Thind, G.S. Mudahar, Measurements of linear attenuation coefficients of irregular shaped samples by two media method, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 1116-1121, https://doi.org/10.1016/j.nimb.2008.02.019.
  30. A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO-P2O5 glass system using Monte Carlo simulation, J. Non-Cryst. Solids 481 (2018) 604-607, https://doi.org/10.1016/j.jnoncrysol.2017.12.001.
  31. Shamsan S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
  32. K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S.S. Bhatti, H.S. Sahota, Gamma-ray attenuation coefficients in bismuth borate glasses, Nucl. Instrum. Methods Phys. Res. B 194 (2002) 1-6, https://doi.org/10.1016/S0168-583X(02)00498-6.
  33. W. Da-Chun, L. Ping-An, Y. Hua, Measurement of the mass attenuation coefficients for SiH4 and Si, Nucl. Instrum. Methods Phys. Res. B 95 (1995) 161-165, https://doi.org/10.1016/0168-583X(94)00437-4.
  34. S.A.M. Issa, Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system, Radiat. Phys. Chem. 120 (2016) 33-37, https://doi.org/10.1016/j.radphyschem.2015.11.025.
  35. T. Singh, U. Kaur, P.S. Singh, Photon energy absorption parameters for some polymers, Ann. Nucl. Energy 37 (2010) 422-427, https://doi.org/10.1016/j.anucene.2009.12.017.
  36. G.J. Hine, The effective atomic numbers of materials for various gamma ray processes, Phys. Rev. 85 (1952) 725.
  37. K. Singh, H. Singh, G. Sharma, L. Gerward, A. Khanna, R. Kumar, R. Nathuram, H.S. Sahota, Gamma-ray shielding properties of CaO-SrO-B2O3 glasses, Radiat. Phys. Chem. 72 (2005) 225-228, https://doi.org/10.1016/j.radphyschem.2003.11.010.
  38. J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, Determination of effective atomic numbers and effctive electron densities for Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 1260-1265, https://doi.org/10.1016/j.jqsrt.2007.10.007.
  39. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Photon interaction and energy absorption in glass: a transparent gamma ray shield, J. Nucl. Mater. 393 (2009) 465-472, https://doi.org/10.1016/j.jnucmat.2009.07.001.
  40. A. Wagh, Y. Raviprakash, S.D. Kamath, Gamma rays interactions with Eu2O3 doped lead fluoroborate glasses, J. Alloys Compd. 695 (2017) 2781-2798, https://doi.org/10.1016/j.jallcom.2016.11.299.
  41. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, Optical, Physical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solid. 72 (2011) 245-251, https://doi.org/10.1016/j.jpcs.2011.01.007.
  42. M.H. Abdel-Wahed, Saleh M. Abdou, A.S. El-Bayoumi, S.M. Salem, A.A. Bendary, Structural, optical properties and g-ray shielding parameters of PbO embedded Li2O borophosphate glass systems, J. Non-Cryst. Solids 543 (2020) 120135, https://doi.org/10.1016/j.jnoncrysol.2020.120135.
  43. T. Singh, A. Kaur, J. Sharma, P.S. Singh, Gamma rays' shielding parameters for some Pb-Cu binary alloys, Eng. Sci. Technol. an Int. J. 21 (2018) 1078-1085, https://doi.org/10.1016/j.jestch.2018.06.012.
  44. A.H. El-Kateb, R.A.M. Rizk, A.M. Abdul-Kader, Determination of atomic cross-sections and effective atomic numbers for some alloys, Ann. Nucl. Energy 27 (2000) 1333-1343, https://doi.org/10.1016/S0306-4549(99)00121-8.
  45. N. Kucuk, M. Cakir, N.A. Isitman, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers, Radiat. Protect. Dosim. 153 (2013) 127-134, https://doi.org/10.1093/rpd/ncs091.