• Title/Summary/Keyword: Edge Reconstruction

Search Result 148, Processing Time 0.033 seconds

Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT

  • Wookon Son;MinWoo Kim;Jae-Yeon Hwang;Young-Woo Kim;Chankue Park;Ki Seok Choo;Tae Un Kim;Joo Yeon Jang
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods: Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results: The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion: For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.

Comparison of LoG and DoG for 3D reconstruction in haptic systems (햅틱스 시스템용 3D 재구성을 위한 LoG 방법과 DoG 방법의 성능 분석)

  • Sung, Mee-Young;Kim, Ki-Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.711-721
    • /
    • 2012
  • The objective of this study is to propose an efficient 3D reconstruction method for developing a stereo-vision-based haptics system which can replace "robotic eyes" and "robotic touch." The haptic rendering for 3D images requires to capture depth information and edge information of stereo images. This paper proposes the 3D reconstruction methods using LoG(Laplacian of Gaussian) algorithm and DoG(Difference of Gaussian) algorithm for edge detection in addition to the basic 3D depth extraction method for better haptic rendering. Also, some experiments are performed for evaluating the CPU time and the error rates of those methods. The experimental results lead us to conclude that the DoG method is more efficient for haptic rendering. This paper may contribute to investigate the effective methods for 3D image reconstruction such as in improving the performance of mobile patrol robots.

A Study on the Edge Construction of CMM Data Using a Method of Mean Curvature Block (평균곡률 구간법을 이용한 CMM 데이터의 경계 형성 연구)

  • Chang, Byoung-Chun;Kim, Dae-Il;Oh, Seok-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.74-80
    • /
    • 2010
  • The purpose of reverse engineering design using 3D measurement data is an accurate reconstruction of real body. In oder to accomplish this object, it is important that creating exact extracting edges should be studying out first of all. This study used edge-based method to find out edge point from the measuring point data. The characteristics are analysed using the mean curvature block method on the fitting NURBS curve and defined edges through block removal condition. The results showed that only using the NURBS curve of maximum curvature analysis to define correct edge of real geometry is limited, but this segmentation approach provides simplified necessary condition for edge classification, and an effectiveness to classify a straight line, curves and fillets etc.

Modified Phillips-Tikhonov regularization for plasma image reconstruction with modified Laplacian matrix

  • Jang, Si-Won;Lee, Seung-Heon;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.472-472
    • /
    • 2010
  • The tomography has played a key role in tokamak plasma diagnostics for image reconstruction. The Phillips-Tikhonov (P-T) regularization method was attempted in this work to reconstruct cross-sectional phantom images of the plasma by minimizing the gradient between adjacent pixel data. Recent studies about the comparison of the several tomographic reconstruction methods showed that the P-T method produced more accurate results. We have studied existing Laplacian matrix used in Phillips-Tikhonov regularization method and developed modified Laplacian matrix (Modified L). The comparison of the reconstruction result by the modified L and existing L showed that modified L produced more accurate result. The difference was significantly pronounced when a portion of plasma was reconstructed. These results can be utilized in the Edge Plasma diagnostics; especially in divertor diagnostics on tokamak a large impact is expected. In addition, accurate reconstruction results from received data in only one direction were confirmed through phantom test by using P-T method with modified L. These results can be applied to the tangentially viewing pin-hole camera diagnostics on tokamak.

  • PDF

Analysis and 3D Reconstruction of a Cerebral Vascular Network Using Image Threshold Techniques in High-resolution Images of the Mouse Brain (쥐 뇌의 고해상도 이미지에서 임계화 기법을 활용한 뇌혈관 네트워크 분석 및 3D 재현)

  • Lee, Junseok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.992-999
    • /
    • 2019
  • In this paper, I lay the foundation for creating a multiscale atlas that characterizes cerebrovasculature structural changes across the entire brain of a mouse in the Knife-Edge Scanning Microscopy dataset. The geometric reconstruction of the vascular filaments embedded in the volume imaging dataset provides the ability to distinguish cerebral vessels by diameter and other morphological properties across the whole mouse brain. This paper presents a means for studying local variations in the small vascular morphology that have a significant impact on the peripheral nervous system in other cerebral areas, as well as the robust and vulnerable side of the cerebrovasculature system across the large blood vessels. I expect that this foundation will prove invaluable towards data-driven, quantitative investigations into the system-level architectural layout of the cerebrovasculature and surrounding cerebral microstructures.

Cone-beam Reconstruction using Limited EPID Projections for Seeds Localization (Seed의 위치 확인을 위한 제한된 EPID 영상을 이용한 콘빔 재구성)

  • Chang, Ji-Na;Jung, Won-Kyun;Park, Sung-Ho;Cheong, Kwang-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.186-190
    • /
    • 2008
  • In this study, we describe the preliminary application for the delineation of a metal object using cone-beam reconstruction (CBR) based on limited electronic portal imaging device (EPID) projections. A typical Feldkamp, Davis and Kress (FDK) reconstruction algorithm accompanying the edge preserving smoothing filter was used as only a few projections are acquired for reconstruction. In a correlation study of the projection numbers, we found that the size of the seeds and their location depicted by these CBR images were almost identical. Limited views were used for CBR, and our method is inexpensive and competitive for use in clinical applications.

  • PDF

(A Progressive Image Coding by Wavelet Coefficient Property) (웨이브렛 계수 특성을 이용한 점진적 영상 부호화)

  • 장윤업
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1287-1294
    • /
    • 2002
  • The algorithm method for progressive image coding based on discrete wavelet transform presented in a paper. After discrete wavelet transform and extract edge information through edge detection, and then designed efficient coding method more then established embedded coding algorithm using expanded EZW algorithm. Generally, edges have a relatively higher influence on image reconstruction. Occurred DWT on image, and can classify significant coefficients and non-significant coefficients. Using property that edge part has appeared significant coefficient in the paper. Especially, we confirmed that higher frequency sub region on DWT image present homogenous direction property. And on embedded coding, which are effective and well-directed information have higher priority to image reconstruction on transmission. Therefore, our technique algorithm system perform better than that of the conventional method such as progressive image coding application.

  • PDF

Contour Extraction Using the GVF Snake (GVF 스네이크를 이용한 윤곽선 추출)

  • 김보경;전병민
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.313-317
    • /
    • 2003
  • This paper suggested the initial edge map through the pre-processing of vague image before apply the GVF snake algorithm. The reason obtain for detail object outline and time efficiency GVF snake algorithm feasible extracted concave edge but mistake interested object edge for the around others. So it need to trim about the object around edges. The method is using Pixel morphological reconstruction, edge extraction mask and threshoding. The result, defend fallen local minimum edge energy and reduce iteration.

  • PDF

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

An Improved Design Method of FIR Quadrature Mirror-Image Filter Banks (개선된 FIR QMF 뱅크의 설계 방법)

  • 조병모;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.213-221
    • /
    • 2004
  • A new method for design of two-channel finite-impulse response(FIR) quadrature mirror-image filter(QMF) banks with low reconstruction delay using weighting function is proposed. The weighting function used in this paper is calculated from the previous updated filter coefficients vector which is adjusted from iteration to iteration in the design of QMF banks. In this paper, passband and stopband edge frequency are used in design of QMF banks with low delay characteristic in time domain instead of specific frequency interval where the artifacts occur in conventional design method. The investigation of specific frequency interval where artifacts occur can not be required by using passband and stopband edge frequency. Some comparisons of performance are made with other existing design method to demonstrate the proposed method for QMF bank design. and it was observed that the proposed method using the weighted function and passband and stopband edge frequency improves the peak reconstruction error by 0.001 [dB], the peak-to-peak passband ripple by 0.003[dB], SNR with a white noise by 7[dB] and SNR with a step input by 32[dB], but with a reduction of the computational efficiency because of updating the weighting function over the conventional method in Ref [11].