• 제목/요약/키워드: Ecological efficiency

검색결과 438건 처리시간 0.021초

Physiological Responses of Calystegia soldanella under Drought Stress

  • Bae, Chae-Youn;Hwang, Jeong-Sook;Bae, Jeong-Jin;Choi, Sung-Chul;Lim, Sung-Hwan;Choi, Deok-Gyun;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제36권4호
    • /
    • pp.255-265
    • /
    • 2013
  • This study was conducted to determine the extent of drought resistance based on physiological responses of Calystegia soldanella under water deficit. In order to investigate the changes of plant growth, stomatal density, photosynthesis, chlorophyll fluorescence, the contents of chlorophyll and carotenoid, osmolality, total ion contents, the contents of carbohydrate and proline, C. soldanella was grown under well watered and drought stressed conditions for 12 days. In this study, water-deficit resulted in remarkable growth inhibition of C. soldanella. The effect of water-deficit on plant growth was associated with low osmotic potential of soil. On day 12 after drought treatment, dry weight, relative water contents, number and area of leaves and stem length were lower than those of control. The stomatal conductance and net photosynthetic rate were significantly reduced in water stressed plant to regulate inner water contents and $CO_2$ exchange through the stomatal pore. Chlorophyll fluorescence and chlorophyll contents were not different in comparison with the control, indicating that the efficiency of photosystem II was not affected by drought stress. This results could be explained that water-deficit in C. soldanella limits the photosynthetic rate and reduces the plant's ability to convert energy to biomass. A significant increase in total ion contents and osmolality was observed on day 7 and day 12. Accumulation of proline in leaves is associated with the osmotic adjustment in C. soldanella to soil water-deficit. Consequently, this increase in osmolality in water stressed plant can be a result in the increase of ion contents and proline.

수중보에 설치된 어도의 어류이동 연계율 평가 (Evaluation of Fish Migration Ratio at the Fishway Constructed in Weir)

  • 차순배;성진욱;김재옥;박제철
    • 한국환경과학회지
    • /
    • 제24권2호
    • /
    • pp.229-236
    • /
    • 2015
  • In this study, the fish-migration ratios of rivers were analyzed, with the aim of proposing objective materials to help South Koreans to establish fish migration systems efficiently in the future. A total of 34,012 weirs have been built in the five major basins, with 5,081 fish-ways observed. Consequently, the fish migration ratio was considered low (14.9 %). According to the findings of the study analyzing the 5,081 fish-ways, standard-type fish-ways took up 68 % of the total while the non-standard types accounted for 32 %. The five major basins were observed to have a total fish-migration ratio of 21.4 %. Regarding tributaries, Tributary 1 accounted for 27.5 % of the fish-migration ratio, while Tributary 2 and 3 accounted for 19.8 % and 16.3 %, respectively. In conclusion, the study argues that any relevant field in the fishing industry of South Korea needs to improve their understanding of the fish-migration ratio. This would be expected, eventually, to help them maximize the efficiency of a minimum number of fish-ways. In addition, the study supports the need for those in relevant fields to study carefully the ecological needs of each fish species, before establishing priority standards for the building of fish-ways.

안산 공단지역에 식재된 소나무류 2종의 생장과 생리학적 반응 (Growth and Physiological Responses of Two Pine Species Grown under Polluted Ansan Industrial Region)

  • 진현오;최동수;이충화;정용호
    • The Korean Journal of Ecology
    • /
    • 제28권5호
    • /
    • pp.321-326
    • /
    • 2005
  • 안산 공단지대에 식재되어 있는 잣나무와 리기다소나무의 생장 저하의 실태와 그 원인을 구명하기 위하여 생장 및 생리학적 반응을 중심으로 대조구와 비교 고찰하였다. 피해구에 식재 되어 있는 두 수종의 침엽 내 Mn, F 그리고 Cl의 농도는 대조구에 비하여 유의적으로 높았으며, 2년생 3년생으로 갈수록 급격히 그 농도가 증가하였다. 또한 필수 영양 원소인 P와 클로로필 함량은 피해구가 대조구에 비하여 유의적으로 감소하였으며, 또한 침엽의 연령이 증가함에 따라 급격히 감소하였음을 알 수 있었다. 한편, 피해구에 식재되어 있는 두 수종의 최대 광합성률, 양자수율$(\Phi)$, 카르복실레이션효율(CE)등의 광합성 능은 대조구에 비하여 현저히 감소하였다. 이상과 같이 독성 원소의 축적 및 필수 영양 원소의 부족 등 환경 스트레스에 의한 수목 생리활동의 저하가 수목 생장 저하의 직접적인 원인으로 판단된다.

도시 수변공간의 활용 실태와 입지적 특성을 반영한 친환경적 수변 도시개발 방안 (Current Status and Environment-Friendly Development Policy of Urban Riverfront in Korea on the Basis of It's Locatioanal Property)

  • 김항집
    • 한국콘텐츠학회논문지
    • /
    • 제12권3호
    • /
    • pp.449-460
    • /
    • 2012
  • 1960년대 이후, 우리나라의 산업화가 급격하게 진행되고 도시가 기능적으로 개발되면서, 도시내부의 강을 중심으로 하는 수변공간은 도로건설과 비선호성시설의 집적으로 도시민의 삶의 공간에서 소외되기 시작하였다. 특히, 산업화시대인 1970~80년대에 폐수와 쓰레기로 오염된 강은 생태 친수공간으로서의 역할을 상실하고 하수구의 기능으로 전락하였다. 그러나 21세기에 들어서서 지속가능한 도시에 대한 요구와 도시의 쾌적성에 대한 수요가 증가하면서, 도시민은 도시 내에서 맑은 물과 쾌적한 수변공간을 갈구하게 되었고, 최근에는 도시재생의 중심적인 공간으로 수변공간이 주목받고 있다. 본 연구에서는 도시 수변공간에 대한 이용현황과 계획의 문제점을 살펴보고, 도시 수변공간이 갖는 입지적 특성을 바탕으로 한 수변공간 활용방안을 분석하여, 우리나라의 도시적 여건에 부합되는 친환경적이며 도시재생에 기여하는 지속가능한 수변공간의 관리방안을 제시하고자 한다.

건물 구조 특성에 따른 기밀성능 및 난방 에너지 요구량 분석 - 신축 공동주택 중심으로 - (An Analysis of the Airtightness Performance and Heating Energy Demand According to Building Structural Characteristics -Focused on Newly Apartment Houses-)

  • 이수인;김정국;김서훈;김종훈;정학근;장철용
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.109-115
    • /
    • 2015
  • Purpose: The importance of building airtightness is increased as the demand and expectation of building energy efficiency is growing. Previous research only focused on airtightness of building openings only to improve building airtightness. However, the analysis of difference of airtightness performance according to the characteristic of building structure has not been performed. Therefore, this study analyzed the difference of airtightness performance according to building structural characteristics in a number of ways. Method: Airtightness that are classified as rigid-frame type or wall type are measured and analyzed the difference of airtightness performance between rigid frame type apartments and wall type apartments. This study calculated the heating energy demand and quantitatively analysis using ISO 13790. Futhermore, this study compared research trend of domestic airtightness performance with airtightness standards of the developed countries based on the field measurement. Result: Airtight performance of wall type is better than rigid frame type in terms of energy saving. The difference of heating energy demand between wall type and rigid frame type was $8.14kWh/m^2yr$.

배관 재질 및 길이에 따른 대규모 시설원예단지용 미활용 에너지 시스템의 성능 평가 (Effects of Pipe Network Materials and Distance on Unused Energy Source System Performance for Large-scale Horticulture Facilities)

  • 이재호;윤여범;현인탁;이광호
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.119-125
    • /
    • 2014
  • This study investigated the effects of pipe network materials and distance on system performance utilizing unused energy sources in large-scale horticulture facility. For this, the modeling was performed with a 100 m long and 100 m wide rectangular shaped glass house having an area of 1ha ($10,000m^2$) using EnergyPlus software. The heat sources considered were air source, geothermal heat, power plant waste heat, sea water heat, and river water. The temperature variation of the fluid with regard to pipe material and distance from the heat source and the resultant heat pump electricity consumptions were calculated. It turned out that the fluid temperature reaching the heat pump increased as the distance from the heat source increased in case of sea water and river water, which have higher temperatures than the surrounding soil, improving the heat pump efficiency. It was vice versa in case of the power plant waste heat. In addition, pipe material of PVC showed the smallest effect on the system performance variation due to the lowest thermal conductivity, compared to PB and HDPE.

The effect on photosynthesis and osmotic regulation in Beta vulgaris L. var. Flavescens DC. by salt stress

  • Choi, Deok-Gyun;Hwang, Jeong-Sook;Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.81-90
    • /
    • 2016
  • This study was to investigate the effect of salt stress on physiological characteristics such as plant growth, photosynthesis, solutes related to osmoregulation of Beta vulgaris. A significant increase of dry weight was observed in 50 mM and 100 mM NaCl. The contents of Chl a, b and carotenoid were lower in NaCl treatments than the control. On 14 day after NaCl treatment, photosynthetic rate (PN), the transpiration rate (E) and stomatal conductance of CO2 (gs) were reduced by NaCl treatment. On 28 day after NaCl treatment, the significant reduction in gs and E was shown in NaCl 200 mM. However, PN and water use efficiency (WUE) in all NaCl treatments showed higher value than that of control. Total ion contents (TIC) and osmolality were higher than the control. On 14 day after treatment, the contents of proline (Pro) increased significantly in 200 mM and 300 mM NaCl concentration compared with control, whereas on 28 day in all treatments it was lower than that of the control. The contents of glycine betaine (GB) increased with the increase of NaCl concentration. The contents of Na+, Cl-, GB, osmolality and TIC increased with the increase of NaCl concentrations. These results suggested that under severe NaCl stress conditions, NaCl treatment did not induce photochemical inhibition on fluorescence in the leaves of B. vulgaris, but the reduction of chlorophyll contents was related in a decrease in leaf production. Furthermore, increased GB as well as Na+ and Cl- contents resulted in a increase of osmolality, which can help to overcome NaCl stress.

주거용 건물의 개별 환기시스템 필요성에 관한 연구 (The Individual Heat-recovery ventilation system of Residential Buildings)

  • 신우철;이왕제;윤종호;백남춘
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.99-104
    • /
    • 2014
  • Recently supply of low energy house is increasing which can enhance energy efficiency and indoor environment comfort. Low energy house have to secure air tightness as well as thermal performance so house become high airtightness and inevitably need heat recovery ventilator to enhance indoor air quality. However, most of current ventilation systems are one-click, controlling the entire space so it causes increasing of heating load and fan power which makes it hard to save energy. Thus, Individual Control system is required which can achieve both enhancing indoor air quality and decreasing heating load and electric fan power. Thereby, in this study, we analyzed the correlation between ventilation and fan power through mock-up experiment and measured ventilation load under individual control system. As a result, under the condition of $24^{\circ}C$ of indoor temperature for 6 month(November to April) in Daejeon, ventilation load by fan speed was $10.9{\sim}19.6kWh/m^2{\cdot}a$ when operated 24 hours and $7.6{\sim}13.7kWh/m^2{\cdot}a$ when operated 12 hours in night time. In addition, it is possible to reduce at most 60% of ventilation load under the individual control system; measured ventilation load was $7.4kWh/m^2{\cdot}a$ when operated 24 hours, and $5.5kWh/m^2{\cdot}$ when operated 12 hours in night time.

Performance Evaluation of Energy Reduction of Light Shelf Applying Punching Plate

  • Choi, Yuchang;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.5-13
    • /
    • 2014
  • Various studies on lighting energy savings are conducted, given that lighting energy consumption accounts 23.5% of building energy consumption. Especially, external type light shelf's efficiency is acknowledged; however, its application is limited in Korea, where high rise building ratio is high, due to high wind pressure. This study delves into natural lighting system to cope with wind pressure, and proposes the punching plate-installed light shelf. This study actually draws lighting energy output, according to whether the punching plate is applied through the test-bed, and verifies the effectiveness of the punching plate-installed light shelf. The conclusion is presented below: First) The result of performance evaluation of light shelf with the punching plate in winter solstice showed that the awning area decreased as the opening ratio increased so that the indoor distributed illumination tended to increase, and $-40^{\circ}$ which was advantageous for awning was determined as the proper angle. Second) The light shelf with the punching plate in spring/autumn equinox shows improved lighting according to the angle, and the appropriate angle of light shelf with the punching plate has increased to $15^{\circ}$ and $20^{\circ}$ according to the opening ratio in comparison to $5^{\circ}C$ which is the appropriate angle of light shelf with no punching plate due to the reflection area reduced by the reflecting plate with holes. Third) The result of performance evaluation of light shelf with the punching plate in summer solstice showed that the lighting performance tended to decrease as the opening ratio increased. 4) The light shelf with the punching plate incurs a 50% energy loss in comparison to the light shelf with no punching plate. However, its effectiveness has been proven in the aspects that it can bring a 50% energy saving in comparison to the case with no installation of light shelf and that it can be designed in response to wind pressure on the high floors.

The Energy Analysis and Evaluation of the NEO-Hanok

  • Han, Sang Hee;Park, So Yeon;Park, Hyo Soon
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.77-86
    • /
    • 2014
  • Plenty of efforts have been made in the traditional architecture of Korea, Hanok, to develop various elements such as restoration, the introduction of new design, and energy-saving while systemic setups on standard and evaluation of eco-friendly energy design of Hanok are lacking. If we evaluate energy performance based on current standards without reflecting unique features of Hanok on the system, Hanok will be included in the very low grade among the residential buildings being included in the approval system of eco-friendly architecture or the unique features will be modified and the burden of increased construction cost. Therefore, this study is to prepare the basic reference for the introductory evaluation system by evaluating the energy performance level of NEO-Hanok based on the current building energy rating system. The result for NEO-Hanok based on the building energy rating system, we propose the rating standard with scorecard elements of NEO-Hanok by considering the necessity of identity and standard for NEO-Hanok. As a result of infiltration test to check the tightness, it was measured as 10.81 times/h (50 ACH). As we switch from the main insulation for the wall from the glass wool 64k(0.035W/mk) to rigid polyurethane foam first class first unit (0.024W/mk), the result was slightly increased from the first demand quantity rating yield $249.8kWh/m^2{\cdot}yr$ to $235.0kWh/m^2{\cdot}yr$. Current certificate system is focused more on the heating load than the cooling load, it is disadvantageous for Hanok, which has less cooling energy consumption in summer. The rating result from the target building study is level 4.