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Abstract
This study was conducted to determine the extent of drought resistance based on physiological responses of Calystegia 

soldanella under water deficit. In order to investigate the changes of plant growth, stomatal density, photosynthesis, chlo-

rophyll fluorescence, the contents of chlorophyll and carotenoid, osmolality, total ion contents, the contents of carbohy-

drate and proline, C. soldanella was grown under well watered and drought stressed conditions for 12 days. In this study, 

water-deficit resulted in remarkable growth inhibition of C. soldanella. The effect of water-deficit on plant growth was 

associated with low osmotic potential of soil. On day 12 after drought treatment, dry weight, relative water contents, num-

ber and area of leaves and stem length were lower than those of control. The stomatal conductance and net photosyn-

thetic rate were significantly reduced in water stressed plant to regulate inner water contents and CO2 exchange through 

the stomatal pore. Chlorophyll fluorescence and chlorophyll contents were not different in comparison with the control, 

indicating that the efficiency of photosystem II was not affected by drought stress. This results could be explained that 

water-deficit in C. soldanella limits the photosynthetic rate and reduces the plant’s ability to convert energy to biomass. 

A significant increase in total ion contents and osmolality was observed on day 7 and day 12. Accumulation of proline 

in leaves is associated with the osmotic adjustment in C. soldanella to soil water-deficit. Consequently, this increase in 

osmolality in water stressed plant can be a result in the increase of ion contents and proline. 
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INTRODUCTION

Plant species on coastal sand dune areas are affected 

by many environmental stresses that negatively impact 

plant metabolism and survival. Drought, salt spray, flood, 

high temperature, low capillary water-holding capacity 

of the sandy soil, low nutrient and water availability are 

the important ecological factors (Hesp 1991, Maun 1998, 

Lawlor and Cornic 2002). In coastal sand dune regions, 

water-deficit stress is one of the major stresses. The fre-

quent moisture deficiency caused by high evaporative 

demand limits plant growth, development and viability. 

General adverse effects of water deficit on plants are the 

decline in height and total fresh and dry biomass produc-

tion (Baher et al. 2002, Farooq et al. 2009). Plant growth is 

largely affected by drought stress, and therefore adapta-

tion on stress conditions is important for plant survival. 

The reduction of plant height is related to the decrease 
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The seeds of C. soldanella were collected from the 

Golaebul sand dune on the eastern coast in Korea 

(36°14′90″N, 129°22′50″E) in June 2010. C. soldanella was 

soaked in 98% sulfuric acid for two and a half hours and 

then washing out repeatedly. Finally, these seeds were 

soaked in distilled water for 30 min. Selected seeds were 

germinated separately in a pot (11 cm × 9 cm) filled with 

sand soil. The soil medium used was originally taken from 

the Golaebul sand dune. This experiments were conduct-

ed in the Kyungpook National University, from August to 

September 2011 in greenhouse where mean tempera-

tures was about 27°C and relative humidity was about 

30%. Natural light from the sun with a mean daytime 

photosynthetic photon flux density (PPFD) was 460 μmol  

m-2 s-1. After sowing, every pot received modified Hoa-

gland’s solution (0.5 mM NH4NO3, 0.5 mM MgSO4·7H2O, 

0.5 mM KH2PO4, 0.5 mM CaCl2·2H2O, 0.5 mM K2SO4, 19 

mM Fe-EDTA and trace elements) every day with 100 mL 

for 3 weeks. The experiment was composed of two irriga-

tion treatments (well-watered and drought conditions). 

The experiment was started when the plants had about 6 

leaves after three weeks. 

Soil Water Contents and Soil Water Potential

Water contents of the soil were determined by the 

weight difference between fresh and air-dried. Water po-

tential of the soil was measured using Mini Tensiometer 

(Skye Instruments Ltd., Llandrindod Wells, UK), and data 

was collected every day. 

Plant Growth and Dimensional Parameters of 
Leaves

At each harvest (day 7 and day 12), the fresh matter of 

leaves was weighted, and stem length and total leaves 

number of plant were determined.  

The relative water contents 

The relative water contents (RWC) was determined as 

follows: 

RWC (%) = (FW – DW)/(TW – DW) × 100,

FW = fresh weight, DW = dry weight, and TW = turgid 

weight. Dry weight of leaves was measured after 3 days 

dried in the oven at 80°C, and a turgid weight of leaves was 

measured after infiltrating the samples for 12 h in distilled 

water at 4°C (Cameron et al. 1999). Relative growth rate 

(RGR, per day) of leaves was determined as:

in the cell enlargement and cell expansion due to the low 

turgor pressure (Bhatt and Srinivasa Rao 2005, Jaleel et al. 

2007, Karthikeyan et al. 2007). 

Many plants respond to water stress at the physiologi-

cal and biochemical levels. Water stress is characterized 

by traits like decreased water and turgor potentials, rela-

tive water content (RWC), osmotic adjustment, wilting, 

high leaf temperature, closure of stomata, and decrease 

in cell enlargement and growth (Kumar and Singh 1998, 

Paseban-Islam et al. 2000, Shao et al. 2008). Stress as a re-

sult of water deficit changes a range of physiological pro-

cesses such as photosynthesis, respiration, transpiration, 

ion uptake, carbohydrate contents, stomatal conduc-

tance and electron transport (Acevedo et al. 1971, Ange-

lopoulos et al. 1996, Flexas et al. 1998, Lu and Zhang 1998, 

Clifton-Brown et al. 2002, Munns 2002, Silva et al. 2007). 

Under drought stress, to avoid and tolerate stress condi-

tions plants accumulate metabolies as osmolytes (Bartels 

and Sunkar 2005). Particularly, proline has been sug-

gested to play an important role as an organic osmolyte. 

Many studies have shown that proline contents in leaves 

of many plants are increased by many stresses including 

drought stress (De Ronde et al. 2000, Abdel-Nasser and 

Abdel-Aal 2002, Parida et al. 2002). 

Understanding of the physiological mechanisms of 

many stressors is important in predicting how distur-

bances will impact future plant distribution and commu-

nity pattern. Previous studies have suggested that adap-

tive features of coastal dune plants include tolerance to 

high temperatures, and efficient water use under high wa-

ter-vapor saturation deficit (Monson et al. 1983, Mooney 

et al. 1983). 

Calystegia soldanella is an endemic plant on coastal 

sand dunes and is located in the foredunes where en-

vironmental stresses are stronger. This plant is a peren-

nial rhizomatous herb with stem up to 50-100 cm, and is 

a representative plant showing ubiquitous distribution 

on coastal sand dune in Korea. Many wild plants have a 

tolerance to water stress, but its extent varies from spe-

cies to species. It is well known that how plants cope 

with many environmental stresses, but the effect of the 

drought stress on C. soldanella plant has not been studied 

well. The object of this study is to determine the extent of 

drought resistance based on physiological responses un-

der water deficit. 

MATERIALS AND METHODS 

Plant Material and Growth Conditions
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Check Mate 90; Mettler Toledo, Columbus, OH, USA), and 

the osmolality of leaf extract solutions was measured by 

means of cryoscopy (OSMETTE micro-osmometer, mod-

el 5004; Precision Systems Inc., Natick, MA, USA).

Contents of Soluble Carbohydrate and Free 
Proline

Soluble carbohydrate contents of leaves were deter-

mined by using the Phenol-Sulfuric acid method. Mix leaf 

extract of 20 μL and distilled water of 780 μL and mix them 

with 400 μL of 5% phenol solution and then put concen-

trated sulfuric acid (98% H2SO4) of 2 mL. Leave the reac-

tion solutions undisturbed for 10 min and then shaking 

for mix. After 30 min, the samples were measured at 490 

nm. Soluble carbohydrate was calculated from a standard 

curve using D-glucose. 

Free proline contents were estimated following the 

method of Bates et al. (1973). Freeze-dried leaves (0.5 g) 

were extracted in 3% sulphosalicylic acid and the homog-

enate filtered through filter paper. Filtrate of 2 mL was 

reacted with 2 mL of acid ninhydrin reagent and glacial 

acetic acid of 2 mL in a test tube for 1 h at 100°C, and the 

reaction terminated in an ice bath. The reaction mixture 

was extracted with 4 mL of toluene and mixed vigorously 

with a vortex mixture for 15-20 s. The chromophore con-

taining toluene was aspirated from the aqueous phase, 

warmed to room temperature and the absorbance mea-

sured at 510 nm using toluene as blank. Proline concen-

tration was calculated from a standard curve using L-pro-

line.

Statistical Analysis

Statistical analysis of control and drought treatments 

at each sampling day was conducted using independent 

samples t-test. This test was carried out to determine if 

significant differences (P < 0.05) were found between two 

groups by using SPSS ver. 18.0 for Windows (SPSS Inc., 

Chicago, IL, USA). The results are shown as the mean ± SD 

of three replicates.

RESULTS and DISCUSSION

Soil Water Contents and Soil Water Potential 

Soil water contents were drastically reduced by water 

stress and the reduction of soil water contents was 89.9% 

and 96.0% on day 7 and day 12, respectively, in drought 

RGR = (ln DW2 – ln DW1)/(d2 – d1),

where DW2 and DW1 are the dry weight of plants for two 

successive harvest dates (d1 and d2). 

Stomatal Density (SD), Photosynthesis and Chlo-
rophyll Fluorescence 

SD, photosynthesis and chlorophyll fluorescence of 

leaves were measured on day 7 and day 12 after drought 

treatment with three replicates. The area of four expanded 

leaves was calculated using the image-analyzing program 

(SCIONIMAGE). Stomatal density (SD) was measured 

on adaxial leaf surface. Stomata were counted in optical 

Axioskop 2 plusmicroscope (Carl Zeiss, Oberkohen, Ger-

many) and photographs of epidermal prints (Boccalan-

dro et al. 2007) were obtained at ×200 magnification from 

middle portions of leaflet laminas. To determine stomatal 

density, further analyses were used. 

Stomatal density (SD) = no. of stomata per leaf area (mm2)

Photosynthesis was measured by a LCi portable infra-

red gas analyzer (IRGA) (ADC BioScientific Ltd., Hoddes-

don, UK). Chlorophyll fluorescence was measured with a 

portable Handy PEA (Hansatech Instruments Ltd., King’s 

Lynn, UK). Chlorophyll fluorescence was measured on 

the adaxial leaf surface, which had been pre-darkened 

for at least for 30 min. Measurements were conducted on 

cloudless days and were done between 10:00 and 14:00. 

Contents of Chlorophyll a, Chlorophyll b and 
Carotenoid 

The leaf samples for chlorophyll and carotenoid con-

tents were extracted by DMSO (Dimethyl sulfoxide) at 

60°C for 12 h. The contents of chlorophyll a, chlorophyll 

b and carotenoid were estimated from absorbance at 645 

nm, 663 nm and 480 nm with UV mini-1240 spectropho-

tometer (Shimadzu, Kyoto, Japan). Quantitative estima-

tion of the chlorophyll and carotenoid contents was ob-

tained by using the equation of Holden (1965) and Kirk 

and Allen (1965), respectively.

Contents of Total Ion and Osmolality

The freeze-dried leaves were ground to a homogenous 

powder and extracted with boiling distilled water for 1 h. 

Total ion contents (calculated as NaCl equivalents) were 

determined using a conductivity instrument (Mettler 
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respectively. After day 12, stem length and leaf numbers 

per plant in drought treatment were shorter and fewer 

than control, and decreased by 34.9% and 29.5% as com-

pared to control, respectively (Fig. 3). In drought-stressed 

plants, RGR and RWC were not shown a significant dif-

ference compared with that of control until day 7, but it 

decreased after day 12. Plant growth inhibition was ob-

served during water deficit. In general, water deficit stress 

mostly reduced plant growth and development (Thakur 

and Kaur 2001). According to many studies, stem length 

was decreased under drought stress (Patel and Golakia 

1988, Pita and Pardes 2001), and the reduction in plant 

dry weight and height is associated with the decrease of 

stem length (Martiniello and Ciola 1995, Iannucci and 

Martiniello 1998).

The differences in the leaf area of fully expanded new 

condition as compared to the well-watered (control) 

condition. During study period, soil water potential de-

creased continuously by water deficit in drought treat-

ment. Determination of the soil water matric potential 

(Ψm) is significant to characterize and monitor processes 

such as crop yield production and plant growth (Young 

and Sisson 2002). During water deficit soil water potential 

would be decrease and this would negatively affect to wa-

ter uptake (Loreto et al. 2003).  Tensiometer used in this 

experiment is extensively used instrument for determina-

tion of Ψm (Or 2001, Young and Sisson 2002). In the pres-

ent study, Ψm was consistently reduced with the decrease 

of soil water contents during drought period (Fig. 1), 

which inevitably interfere plant growth and development.  

Plant Growth and Dimensional Parameters of 
Leaves

DW, RGR and RWC in leaves of drought treatment were 

lower than control after day 7, but were not shown sig-

nificant difference between control and treatment (Fig. 

2). A significant decrease in DW, RGR and RWC was ob-

served on day 12 after treatment, and decreased by 64.5%, 

89.1% and 25.3% as compared with that in the control, 

y = -0.4005x2 - 3.2028x - 15.112
R2 = 0.9202    
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Fig. 1. Change in soil water contents and water potential in pots with 
well-watered (●) and drought treatments (○). Means values of three 
replicates with standard deviation (tested with t-test; P = 0.05). ***P < 0.001.
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Fig. 2. Change in relative water contents, dry weight and relative 
growth rate of leaves per plant with well-watered (●) and drought 
treatments (○). Means values of three replicates with standard deviation 
(tested with t-test; P = 0.05). *P < 0.05, **P < 0.01.



Physiological responses of C. soldanella under drought stress

259 http://www.jecoenv.org

leaf area in response to water availability and other envi-

ronmental factors (Casson and Gray 2008, Boccalandro et 

al. 2009). Under stress conditions many plants increased 

stomatal density with the decrease of leaf area that en-

hanced gas exchange per leaf area and biomass yield 

leaves between control and drought treatment was not 

shown on day 7. However, the leaf area on 12 days after 

drought treatment decreased by 52.2% compared with 

the control (Fig. 4). In the present study, water deficit 

stress reduced plant growth such as stem length, number 

of leaves and leaf area. The reduction in plant growth by 

water deficit is associated with the reduction of plant bio-

mass and RGR. Leaf area plasticity is an important means 

by which a drought-stressed crop maintains control of 

water use and the leaf growth was used as a physiological 

trait to estimate acclimation to water deficit (Rucker et al. 

1995, Blum 1996, Shubhra et al. 2003). The maintenance 

of higher RWC can be used as an indicator of drought 

resistance mechanisms in plants under soil drying con-

ditions (Chylinski et al. 2007). Also, decrease in RWC re-

flects a loss of turgor causing of limited water availability 

(Ndayiragije and Lutts 2006).

Stomata Density, Photosynthesis and Chloro-
phyll Fluorescence

On day 7 and day 12, Stomata density was not signifi-

cantly different compared with that of control (Fig. 5). 

Stomata aparture and stomatal density mainly control the 

stomatal conductance of CO2 which vary with changes of 
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Fig. 3. Change in stem length and number of leaves per plant with well-
watered (●) and drought treatments (○). Means values of three replicates 
with standard deviation (tested with t-test; P = 0.05). *P < 0.05.
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water use efficiency between treatments on day 12 after 

drought stress. In the present study, C. soldanella showed 

decrease in photosynthetic rate and stomatal conduc-

tance of CO2 to a similar degree, indicating that photo-

synthetic rate is largely reduced due to the reduction in 

stomatal conductance of CO2 which is highly sensitive to 

soil-water deficit. Stomatal closure inhibited leaf photo-

synthetic capacity in drought stressed plants. According 

to many studies, stomatal conductance of CO2 declined 

before leaf water contents are influenced, and photosyn-

thetic rate was mostly dependent on stomatal aperture 

(Farquhar et al. 1989, Cornic and Briantais 1991). As well 

as the decline in photosynthetic rate and stomatal con-

ductice of CO2, the value of the transpiration rate was low-

er in drought-stressed plants than that of control. Under 

stressed conditions transpiration rate is largely correlated 

production (Yang and Wang 2001, Zhang et al. 2006, Gior-

dano et al. 2011) whereas the number of stomata per leaf 

decreases (Quarrie and Jones 1977). For the stomatal den-

sity per leaf area, C. soldanella did not show significant 

difference between control and treatment. It is suggested 

that the stomatal density of C. soldanella is no largely af-

fected by drought stress.

Photosynthesis was measured at the end of the final 

stress periods, day 12. Understanding the physiological 

mechanisms of many stressors is crucial to anticipating 

how physiological interruption will affect future plant de-

velopments. The well-watered plants showed higher net 

photosynthetic rate, transpiration rate, stomatal conduc-

tance of CO2, and carboxylation efficiency than those of 

drought-stressed plants (Fig. 6). However, there was no 

significant difference to the value of substomatal CO2 and 
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Fig. 6. The difference in photosynthesis between two conditions on day 12 with well-watered (■) and drought treatments (□). Means values of three 
replicates with standard deviation (tested with t-test; P = 0.05). *P < 0.05, **P < 0.01, ***P < 0.001.
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was resistant to water stress and the electron transport 

chain was maintained under water deficit conditions, 

even though photosynthetic rate and stomatal conduc-

tice of CO2 were strongly limited. 

Contents of Chlorophyll a, Chlorophyll b and 
Carotenoid

On day 7, chlorophyll a, total chlorophyll and carot-

enoid contents showed small increase 15.7%, 15.5% and 

16.3%, respectively, in drought treatment as compared 

to the control. On day 12, chlorophyll b, total chlorophyll 

and carotenoid contents of the stressed plants were lower 

than those of controls, but there were no significantly dif-

ferent (Table 2). 

Water stress leads to a decline in photosynthetic activ-

ity and change of the chloroplast capacity (Martinez et al. 

2003, Jaleel et al. 2007, Massacci et al. 2008). Decrease of 

chlorophylls and carotenoid contents by stressed condi-

tions was reported in several plant species (Loggini et al. 

1999, Agastian et al. 2000). In the present study, contents 

of chlorophyll and carotenoid under water stress were de-

creased after 12 days, but there was no significant differ-

ence compared to control. It is suggested that the capacity 

of chloroplast does not get much damage from drought 

conditions. 

Contents of Total Ion, Osmolality, Soluble Carbo-
hydrate and Proline

The total ion contents and osmolality of drought-

stressed plants had higher than control plants during 

study period. The value of total ion contents and osmolal-

ity gradually increased and it is significantly different than 

those of control. Total ion contents in the leaf of drought-

stressed plant were increased by19.7% and 36.3%, and os-

molality was increased by 41.5% and 32.3% as compared 

to control on the day 7 and day 12, respectively.

Soluble carbohydrate contents were gradually in-

creased during drought stress. The value of the soluble 

with stomatal conductance of CO2 according to a higher 

adaptability of stomata (Gratani and Ghia 2002, Niu et 

al. 2006). Abscisic acid (ABA), a plant stress hormone, in-

duces the closure of leaf stomata, thereby reducing wa-

ter loss through transpiration, and decreasing the rate of 

photosynthesis. These responses improve the water-use 

efficiency of the plant (Waseem et al. 2011). The water use 

efficiency by stomatal regulation is an imperative feature 

for plant species to survive in coastal sand dunes.

Maximum quantum use efficiency (Fv/Fm) in dark-

adapted leaves corresponds to the ratio (Fm - F0)/Fm, where 

Fm is the maximal fluorescence yield of a dark-adapted 

sample, with all PSII reaction centres fully closed, and 

F0 is the minimum fluorescence yield of a dark-adapt-

ed sample, with all PSII reaction centres fully open.  Fv/

Fm has been commonly used to identify changes in the 

photosynthetic apparatus as a result of stress (Baker and 

Rosenqvist 2004, Resco et al. 2008). Previous studies sug-

gest that chlorophyll fluorescence parameters tend to be 

strongly correlated with plants mortality to react environ-

mental stresses (Wakrim et al. 2005).

In the present study, Fv/Fm were not significantly dif-

ferent under well-watered and drought conditions (Table 

1). According to other previous studies, some plants did 

not show any remarkable change of Fv/Fm under drought 

stress whereas plant growth was rapidly decreased 

(Munns et al. 2010). C. soldanella photochemical activity 

Table 1. Change in chlorophyll fluorescence parameters (F0, Fm and Fv/
Fm) with well-watered and drought treatments

Day 7 Day 12

well-watered drought well-watered drought

F0 341 ± 10.6 386 ± 55.8 350 ± 36.9 435 ± 87.9

Fm     1614 ± 124  1438 ± 112     1461 ± 124  1483 ± 95 

Fv/Fm      0.79 ± 0.02   0.73 ± 0.05      0.76 ± 0.02  0.71 ± 0.05

F0, Fm and Fv/Fm mean the minimum fluorescence intensity, the maximal 
fluorescence intensity and the maximum quantum efficiency of PSII pho-
tochemistry, respectively. Means values of three replicates with standard 
deviation (tested with t-test; P = 0.05).

Table 2. Change in chlorophyll and carotenoid contents with well-watered and drought treatments 

          Day 7            Day 12

well-watered drought well-watered drought

Chla (mg/g) 6.82 ± 0.30 7.89 ± 0.30* 6.42 ± 0.29 6.50 ± 1.26

Chlb (mg/g) 1.41 ± 0.01              1.61 ± 0.21 1.20 ± 0.27 0.68 ± 0.43

Total Chl (mg/g) 8.23 ± 0.32  9.50 ± 0.19** 7.62 ± 0.55 7.18 ± 0.92

Carotenoid (mg/g)    416 ± 13.62      483 ± 10.31**     408 ± 19.85     375 ± 48.41
*P < 0.05, **P < 0.01. Means values of three replicates with standard deviation (tested with t-test; P = 0.05).
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In conclusion, physiological responses of C. soldanel-

la to water-deficit were related to the drought duration. 

After day 7 of drought treatment, the inhibition of plant 

growth and the maximum efficiency of photosystem 

II (PSII) photochemistry (Fv/Fm) was not observed, but 

the contents of total ion and proline increased, indicat-

ing that the accumulation of ion and osmotic solutes in 

C. soldanella may help to maintain plant growth under 

the water stress condition. The photosynthetic rate and 

stomatal conductance in drought stressed C. soldanella 

plant for 12 days were decreased by 92.2% and 93.9%, re-

spectively, with a low leaf RWC of 25.3%, but Fv/Fm was 

not affected under drought condition, indicating the pho-

tosynthesis down regulation may mainly derive from sto-

matal limitation for this species. The water use efficiency 

by stomatal regulation is an imperative feature for plant 

species to survive in coastal sand dunes. The increase of 

solute, mainly ion and proline indicated that C. soldanella 

plant under severe drought condition is the responses to 

overcome low osmotic potential of soil. 
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