• Title/Summary/Keyword: Ecole Polytechnique

Search Result 92, Processing Time 0.028 seconds

The Birth and Transformation of the Modern Civil Engineers in France - Focused on the Ecole des Ponts et Chauss$\acute{e}$es - (프랑스 근대 토목엔지니어의 탄생과 변모 - 토목학교를 중심으로 -)

  • Moon, Ji-Young
    • Journal of Engineering Education Research
    • /
    • v.14 no.5
    • /
    • pp.67-74
    • /
    • 2011
  • The object of this study is to examine the process of the birth and transformation of civil engineering education as well as of modern civil engineers, called 'State noblesse', in the state engineer groups of France. For this, we will look into the background of founding the civil engineer corps and the civil engineering school, the transformation process of the civil engineering school into the applied school of Ecole Polytechnique, the activities of civil engineers in the industrialization process, and finally the organization and identity of the civil engineer group.

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

Fabrication of HepG2 Cell Laden Collagen Microspheres using Inkjet Printing (잉크젯 프린팅을 이용한 HepG2 세포 담지 콜라겐 마이크로스피어 제작)

  • Choi, Jin Ho;Kim, Young Ho;Jacot-Descombes, Loic;Brugger, Jurgen;Kim, Gyu Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.743-747
    • /
    • 2014
  • In this study, drop-on-demand system using piezo-elecrtric inkjet printers was employed for preparation of collagen microspheres, and its application was made to the HepG2 cell-laden microsphere preparation. The collagen microspheres were injected into beaker filled with mineral oil and incubated in a water bath at $37^{\circ}C$ for 45 minutes to induce gelation of the collagen microsphere. The size of collagen microsphere was $100{\mu}m$ in diameter and $80{\mu}m$ in height showing spherical shape. HepG2 cells were encapsulated in the collagen microsphere. The cell-laden microspheres were inspected by the microscopic images. The encapsulation of cells may be beneficial for applications ranging from tissue engineering to cell-based diagnostic assays.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Optimization of 3G Mobile Network Design Using a Hybrid Search Strategy

  • Wu Yufei;Pierre Samuel
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.471-477
    • /
    • 2005
  • This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a post­optimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.

Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis

  • Mala, Petra;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2431-2441
    • /
    • 2020
  • Currently, the pin-by-pin homogenized solvers are a very active research field as they can, unlike the nodal codes, directly predict the local power, while requiring significantly less computational resources than the heterogeneous transport codes. This paper presents a recently developed pin-by-pin diffusion/SP3 solver Tortin, its spatial discretization method and the reflector treatment. Regarding the spatial discretization, it was observed that the finite difference method applied on pin-cell size mesh does not properly capture the big flux change between MOX and uranium fuel, while the nodal expansion method is more accurate but too slow. If the finite difference method is used with a finer mesh in the outer two pin rows of the fuel assembly, it increases the required computation time by only 50%, but decreases the pin power errors below 1% with respect to lattice code reference solutions. The paper further describes the coupling of Tortin with a microscopic depletion solver. Several verification tests show that the SP3 pin-by-pin solver can reproduce the heterogeneous transport solvers results with very good accuracy, even for fuel cycle depletion of very heterogeneous core employing MOX fuel or inserted control rods, while being two orders of magnitude faster.

Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules

  • Shama, Ahmed;Rochman, Dimitri;Pudollek, Susanne;Caruso, Stefano;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2816-2829
    • /
    • 2021
  • Decay heat residuals of spent nuclear fuel (SNF), i.e., the differences between calculations and measurements, were obtained previously for various spent fuel assemblies (SFA) using the Polaris module of the SCALE code system. In this paper, we compare decay heat residuals to their uncertainties, focusing on four PWRs and four BWRs. Uncertainties in nuclear data and model inputs are propagated stochastically through calculations using the SCALE/Sampler super-sequence. Total uncertainties could not explain the residuals of two SFAs measured at GE-Morris. The combined z-scores for all SFAs measured at the Clab facility could explain the resulting deviations. Nuclear-data-related uncertainties contribute more in the high burnup SFAs. Design and operational uncertainties tend to contribute more to the total uncertainties. Assembly burnup is a relevant variable as it correlates significantly with the SNF decay heat. Additionally, burnup uncertainty is a major contributor to decay heat uncertainty, and assumptions relating to these uncertainties are crucial. Propagation of nuclear data and design and operational uncertainties shows that the analyzed assemblies respond similarly with high correlation. The calculated decay heats are highly correlated in the PWRs and BWRs, whereas lower correlations were observed between decay heats of SFAs that differ in their burnups.

Protection of a Multicast Connection Request in an Elastic Optical Network Using Shared Protection

  • BODJRE, Aka Hugues Felix;ADEPO, Joel;COULIBALY, Adama;BABRI, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Elastic Optical Networks (EONs) allow to solve the high demand for bandwidth due to the increase in the number of internet users and the explosion of multicast applications. To support multicast applications, network operator computes a tree-shaped path, which is a set of optical channels. Generally, the demand for bandwidth on an optical channel is enormous so that, if there is a single fiber failure, it could cause a serious interruption in data transmission and a huge loss of data. To avoid serious interruption in data transmission, the tree-shaped path of a multicast connection may be protected. Several works have been proposed methods to do this. But these works may cause the duplication of some resources after recovery due to a link failure. Therefore, this duplication can lead to inefficient use of network resources. Our work consists to propose a method of protection that eliminates the link that causes duplication so that, the final backup path structure after link failure is a tree. Evaluations and analyses have shown that our method uses less backup resources than methods for protection of a multicast connection.