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ON TRANSLATION SURFACES WITH ZERO GAUSSIAN
CURVATURE IN LORENTZIAN SOL3 SPACE
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Abstract. In this work we classified translation invariant surfaces with
zero Gaussian curvature in the 3−dimensional Sol Lie group endowed with
Lorentzian metric.
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1. Introduction

During the recent years, there has been a rapidly growing interest in the
geometry of surfaces in the homogeneous space Sol3 focusing on minimal and
constant mean curvature and totally umbilic surfaces. This was initiated by
R.Souam and E.Toubiana [24, 25], and by R.Lopez and M.I.Munteanu [14, 15]
. More general many works are devoted to studying the geometry of surfaces in
3-homogeneous space Sol3. See for example [16],[13],[18],[10],[19].
The Sol3 geometry is eight models geometry of Thurston, see [27] .It is a Lie
group endowed with a left-invariant metric, it is a homogeneous simply connected
3−manifold with a 3−dimensional isometry group, see [8].It is isometric to R3

equipped with the Lorentzian metric
ds2 = e2zdx2 − e−2zdy2 + dz2.

where (x, y, z) the usual coordinates of R3.
The group structure of Sol3 is given by

(x′, y′, z′) ⋆ (x, y, z) = (e−z
′
x+ x′, ez

′
y + y′, z + z′).

The isometries are
(x, y, z) 7→ (±e−cx+ a,±ecy + b, z + c)
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where a, b end c are any real numbers.

A left-invariant orthonormal frame {E1, E2, E3} in the Lorentzian Sol3 Lie
group is given by

E1 = e−z
∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
. (1)

The Levi-Civita connection ∇ of the Lorentzian Sol3 Lie group with respect to
this frame is  ∇E1

E1 = −E3,∇E1
E2 = 0,∇E1

E3 = E1

∇E2
E1 = 0,∇E2

E2 = −E3,∇E2
E3 = −E2

∇E3
E1 = 0,∇E3

E2 = 0,∇E3
E3 = 0.

(2)

The non-vanishing curvature tensor R components are computed as R(E1, E2)E1 = −E2, R(E1, E2)E2 = −E1

R(E1, E3)E1 = E3, R(E1, E3)E3 = −E1

R(E2, E3)E2 = −E3, R(E2, E3)E3 = −E2.
(3)

The Ricci curvature components {Ricij} are computed as

Ric11 = Ric12 = Ric13 = Ric23 = Ric22 = 0, Ric33 = −2. (4)

The scalar curvature τ of the Lorentzian Sol3 Lie group is constant and we have

τ = trRic =

3∑
i=1

g(Ei, Ei)Ric(Ei, Ei) = −2. (5)

2. Flat Translation Surfaces in Lorentzian Sol3 space

2.1. In this section we classified complete flat translation surfaces (Σ) in
Lorentzian Sol3 space which are invariant under the one parameter group of
isometries (x, y, z) 7→ (x, y + c, z). Clearly, such a surface is generated by a
curve γ in the totally geodesic plane {y = 0}. Discarding the trivial case of a
vertical plane {x = x0}, we can assume that γ is locally is a graph over the
x−axis. Thus γ is given by γ(x) = (x, 0, z(x)). Therefore the generated surface
is parameterized by

X(x, y) = (x, y, z(x)), (x, y) ∈ R2.

We have an orthogonal pair of vector fields on (Σ), namely,

e1 := Xx = (1, 0, z′) = ezE1 + z′E3.

and
e2 := Xy = (0, 1, 0) = e−zE2.

The coefficients of the first fundamental form are:

E =< e1, e1 >= z′2 + e2z, F =< e1, e2 >= 0, G =< e2, e >= −e−2z.



On Translation Surfaces With Zero Gaussian Curvature in Lorentzian Sol3 Space 833

As a unit normal field we can take

N =
−z′e−z√
1 + z′2e−2z

E1 +
1√

1 + z′2e−2z
E3

The covariant derivatives are
∇̃e1e1 = 2z′ezE1 + (z′′ − e2z)E3

∇̃e1e2 = −z′e−zE2

∇̃e2e2 = −e−2zE3.

The coefficients of the second fundamental form are

l =< ∇̃e1e1, N >=
−2z′2 + z′′ − e2z√

1 + z′2e−2z

m =< ∇̃e1e2, N >= 0

n =< ∇̃e2e2, N >=
−e−2z

√
1 + z′2e−2z

.

Let Kext be the extrinsic Gauss curvature of (Σ),

Kext =
ln−m2

EG− F 2
= −−2z′2e−2z + z′′e−2z − 1

(1 + z′2e−2z)2
. (6)

In order to obtain the intrinsic Gauss curvature Kint, recall that Kint = Kext+
K(e1 ∧ e2), where K(e1 ∧ e2) is the sectional curvature of each tangent plane
spanned by e1 and e2, and

K(e1 ∧ e2) =
〈R(e1, e2)e2, e1〉

< e1, e1 >< e2, e2 > − < e1, e2 >2

where
R(e1, e2)e2 = ∇̃e1∇̃e2e2 − ∇̃e2∇̃e1e2 − ∇̃[e1,e2]e2

Now we easily compute
∇̃e1∇̃e2e2 = −e−zE1 + 2z′e−2zE3

∇̃e2∇̃e1e2 = z′e−2zE3

∇̃[e1,e2]e2 = 0.

Thus we have
K(e1 ∧ e2) = −1− z′2e−2z

1 + z′2e−2z
.

Consequently, the intrinsic Gauss curvature is

Kint = −e
−2z[z′′ − 2z′2 − z′4e−2z]

(1 + z′2e−2z)2
. (7)

So that (Σ) is a flat surface in Lorentzian Sol3 if and only if
Kint = 0,

that is, if and only if
z′′ − 2z′2 − z′4e−2z = 0 (8)
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to classify flat surfaces must solve the equation (8)
We note that for z equal to a constant (z = z0) is a solution of the equation (8).
If z is not constant (z′ 6= 0),suppose that z′ = p, and

z′′ =
dp

dx
=
dp

dz

dz

dx
= p.p′(z)

equation (8) becomes
p.p′ = 2p2 + p4e−2z.

or
p−3.p′ = 2p−2 + e−2z. (9)

and suppose that p−2 = h, equation (9) becomes
−1

2
h′ = 2h+ e−2z. (10)

homogeneous solutions of equation (10) is

h(z) = K.e−4z.

and general solutions of the equation (10) is

h(z) = e−4z(a− e2z),

where a ∈ R∗,+ and z ∈]−∞, ln(
√
a)[.Therefore

p(z) = ± 1√
h(z)

= ± e2z√
a− e2z

.

and we have

z′ = ± e2z√
a− e2z

.

or
dz

dx
= ± e2z√

a− e2z

so separating variables, we obtain∫
dx =

∫
±
√
a− e2z

e2z
dz

i.e

x = ±
∫ √

a− e2z

e2z
dz + α,

where α ∈ R.
we substitute tanh(t) =

√
a−e2z√
a

, dz = − tanh(t)dt, and e2z = a
cosh2(t)

, therefore∫ √
a− e2z

e2z
dz = −−1√

a

∫
sinh2(t)dt = − 1

8
√
a
[e2t − e−2t] +

t

2
√
a
,
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and as t = arc tanh
(√

a−e2z√
a

)
= 1

2 ln

(
1+

√
a−e2z√
a

1−
√
a−e2z√
a

)
, thus

∫ √
a− e2z

e2z
dz = − 1

8
√
a

[(√
a+

√
a− e2z

√
a−

√
a− e2z

)
−

(√
a−

√
a− e2z

√
a+

√
a− e2z

)]

+
1

2
√
a
arc tanh

(√
a− e2z√
a

)
and is calculated by the following∫ √

a− e2z

e2z
dz =

1

2
√
a
arc tanh

(√
a− e2z√
a

)
−

√
a− e2z

2e2z
.

Therefore

x(z) = ±

(
1

2
√
a
arc tanh

(√
a− e2z√
a

)
−

√
a− e2z

2e2z

)
+ α.

As conclusion, we have

Theorem 2.1. •The only non extendable flat translation surfaces in Lorentzian
Sol3 space which are invariant under the one parameter group of isometries
(x, y, z) 7→ (x, y + c, z), are the surfaces whose parametrization is X(x, y) =
(x, y, z(x)) where x and z satisfy

x = ±

(
1

2
√
a
arc tanh

(√
a− e2z√
a

)
−

√
a− e2z

2e2z

)
+ α.

where a ∈ R∗,+, α ∈ R and z ∈]−∞, ln(
√
a)[.

•In particular the only complete flat translation surfaces in Lorentzian Sol3 space
which are invariant under the one parameter group of isometries (x, y, z) 7→
(x, y + c, z), are the planes z = z0.

Theorem 2.2. •The only complete extrinsically flat translation surfaces in
Lorentzian Sol3 space which are invariant under the one parameter group of
isometries (x, y, z) 7→ (x, y + c, z), are parameterized by

X(x, y) =

(
x, y, ln

(
1√

−x2 + 2λx+ µ

))
,

where λ, µ ∈ R, and λ2 + 2µ > 0 α ∈ R and x ∈]λ−
√
λ2 + 2µ, λ+

√
λ2 + 2µ[.

Proof. We know that Σ is extrinsically surface if and only if Kext = 0, and we
have Kext = 0 equivalent to

2z′2e−2z − z′′e−2z = −1.
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Figure 1. Non extendable flat surface in Lorentzian Sol3

:x(z) = ±
(

1
2
√
0.2
arc tanh

(√
0.2−e2z√

0.2

)
−

√
0.2−e2z
2e2z

)
+ 2, a =

0.2, z = −6..− 1,, y = −4..8 .

we remark that 2z′2e−2z − z′′e−2z = (−z′e−2z)′, thus
−z′e−2z = −x+ λ, (11)

where λ ∈ R,and we integrate the equation 11

z(x) = ln

(
1√

−x2 + 2λ+ 2µ

)
,

where µ ∈ R, and λ2 + 2µ > 0 α ∈ R and x ∈]λ−
√
λ2 + 2µ, λ+

√
λ2 + 2µ[.

□
2.2. In this section we classified complete flat translation surfaces (Σ) in
Lorentzian Sol3 space which are invariant under the one parameter group of
isometries (x, y, z) 7→ (x+ c, y, z). Clearly, such a surface is generated by a curve
β in the totally geodesic plane {x = 0}. Discarding the trivial case of a vertical
plane {y = y0}, we can assume that β is locally is a graph over the y−axis. Thus
β is given by β(y) = (0, y, z(y)). Therefore the generated surface is parameterized
by

X(x, y) = (x, y, z(y)), (x, y) ∈ R2.
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We have an orthogonal pair of vector fields on (Σ), namely,
e1 := Xx = (1, 0, 0) = ezE1.

and
e2 := Xy = (0, 1, z′) = e−zE2 + z′E3.

The coefficients of the first fundamental form are:
E =< e1, e1 >= e2z, F =< e1, e2 >= 0, G =< e2, e2 >= z′2 − e−2z.

As a unit normal field we can take

N =
z′ez√

| − 1 + z′2e2z|
E2 +

1√
| − 1 + z′2e2z|

E3

The covariant derivatives are
∇̃e1e1 = −e2zE3,

∇̃e1e2 = z′ezE1,

∇̃e2e2 = −2z′e−zE2 + (z′′ − e−2z)E3.

The coefficients of the second fundamental form are

l =< ∇̃e1e1, N >=
−e2z√

| − 1 + z′2e2z|

m =< ∇̃e1e2, N >= 0

n =< ∇̃e2e2, N >=
2z′2 + z′′ − e−2z√

| − 1 + z′2e2z|
.

Let Kext be the extrinsic Gauss curvature of (Σ),

Kext =
ln−m2

EG− F 2
=

2z′2e2z + z′′e2z − 1

(−1 + z′2e2z)2
. (12)

In order to obtain the intrinsic Gauss curvature Kint, recall that Kint = Kext+
K(e1 ∧ e2), where K(e1 ∧ e2) is the sectional curvature of each tangent plane
spanned by e1 and e2, and

K(e1 ∧ e2) = ⟨R(e1,e2)e2,e1⟩
<e1,e1><e2,e2>−<e1,e2>2

= R1212+z
′2R1313

−1+z′2e2z

= −1−z′2e2z
−1+z′2e2z .

Consequently, the intrinsic Gauss curvature is

Kint =
e2z[z′′ + 2z′2 − z′4e2z]

(−1 + z′2e2z)2
. (13)
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So that (Σ) is a flat surface in Lorentzian Sol3 if and only if

Kint = 0,

that is, if and only if
z′′ + 2z′2 − z′4e2z = 0 (14)

to classify flat surfaces must solve the equation (14)
We note that for z equal to a constant (z = z0 ∈ R) is a solution of the equation
(14).
If z is not constant (z′ 6= 0),suppose that z′ = q, and

z′′ =
dq

dx
=
dq

dz

dz

dx
= q.q′(z)

equation (14) becomes
q.q′ = −2q2 + q4e2z.

or
q−3.q′ = −2q−2 + e2z. (15)

and suppose that q−2 = g, equation (15) becomes
−1

2
g′ = −2g + e2z. (16)

homogeneous solutions of equation (16) is

g(z) = K.e4z.

and general solutions of the equation (16) is

g(z) = e4z(a+ e−2z),

where a ∈ R∗,− and z ∈]−∞, ln( 1√
−a )[. Therefore

q(z) = ± 1√
g(z)

= ± e−2z

√
a+ e−2z

.

and we have
z′ = ± e−2z

√
a+ e−2z

.

or
dz

dy
= ± e−2z

√
a+ e−2z

so separating variables, we obtain∫
dy =

∫
±
√
a+ e−2z

e−2z
dz

i.e

y =

∫
±
√
a+ e−2z

e−2z
dz + δ,
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where δ ∈ R.
we substitute tanh(t) =

√
a+e−2z√

a
, dz = tanh(t)dt, and e−2z = a

cosh2(t)
= a(1 −

tanh2(t)), therefore∫ √
a+ e−2z

e−2z
dz =

1√
a

∫
sinh2(t)dt = − 1

8
√
a
[e2t − e−2t] +

t

2
√
a
,

and as t = arc tanh
(√

a+e−2z√
a

)
= 1

2 ln

(
1+

√
a+e−2z
√
a

1−
√
a+e−2z
√
a

)
, thus

∫ √
a+ e−2z

e−2z
dz = − 1

8
√
a

[(√
a+

√
a+ e−2z

√
a−

√
a+ e−2z

)
−

(√
a−

√
a+ e−2z

√
a+

√
a+ e−2z

)]

+
1

2
√
a
arc tanh

(√
a+ e−2z

√
a

)
and is calculated by the following∫ √

a+ e−2z

e−2z
dz =

1

2
√
a
arc tanh

(√
a+ e−2z

√
a

)
+

√
a+ e−2z

2e−2z
.

As conclusion, we have

Theorem 2.3. •The only non extendable flat translation surfaces in Lorentzian
Sol3 which are invariant under the one parameter group of isometries (x, y, z) 7→
(x+c, y, z), are the surfaces whose parametrization is X(x, y) = (x, y, z(y)) where
y and z satisfy

y = ±

(
1

2
√
a
arc tanh

(√
a+ e−2z

√
a

)
+

√
a+ e−2z

2e−2z

)
+ δ,

where a ∈ R∗,−, δ ∈ R and z ∈]−∞, ln( 1√
−a )[.

•In particular the only complete flat translation surfaces in Lorentzian Sol3
which are invariant under the one parameter group of isometries (x, y, z) 7→
(x+ c, y, z), are the planes z = z0.

Theorem 2.4. •The only complete extrinsically flat translation surfaces in
Lorentzian Sol3 which are invariant under the one parameter group of isometries
(x, y, z) 7→ (x+ c, y, z), are parameterized by

X(x, y) =
(
x, y, ln

(√
y2 + 2λy + µ

))
,

where λ, µ ∈ R, and λ2 − 2µ > 0 α ∈ R and y ∈] − ∞, λ −
√
λ2 − 2µ[∪]λ +√

λ2 − 2µ,+∞[.

Proof. We know that Σ is extrinsically flat surface if and only if Kext = 0, and
we have Kext = 0 equivalent to

2z′2e2z + z′′e2z = 1.
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Figure 2. Non extendable flat surface in Lorentzian Sol3

:y(z) = ±
(

1
2
√
0.2
arc tanh

(√
0.2−e−2z√

0.2

)
−

√
0.2−e−2z

2e−2z

)
+ 2, a =

0.2, z = −0.5..6,, x = −4..8 .

we remark that 2z′2e2z + z′′e2z = (z′e2z)′, thus

z′e2z = y + λ, (17)

where λ ∈ R,and we integrate the equation 17

z(y) = ln
(√

y2 + 2λy + 2µ
)
,

where µ ∈ R, and λ2 − 2µ > 0 α ∈ R and y ∈] − ∞, λ −
√
λ2 − 2µ[∪]λ +√

λ2 − 2µ,+∞[. □
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