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Optimization of 3G Mobile Network Design Using
a Hybrid Search Strategy

Yufei Wu and Samuel Pierre

Abstract: This paper proposes an efficient constraint-based opti-
mization model for the design of 3G mobile networks, such as uni-
versal mobile telecommunications system (UMTS). The model con-
cerns about finding a set of sites for locating radio network con-
trollers (RNCs) from a set of pre-defined candidate sites, and at
the same time optimally assigning node Bs to the selected RNCs.
All these choices must satisfy a set of constraints and optimize an
objective function. This problem is NP-hard and consequently can-
not be practically solved by exact methods for real size networks.
Thus, this paper proposes a hybrid search strategy for tackling this
complex and combinatorial optimization problem. The proposed
hybrid search strategy is composed of three phases: A constraint
satisfaction method with an embedded problem-specific goal which
guides the search for a good initial solution, an optimization phase
using local search algorithms, such as tabu algorithm, and a post-
optimization phase to improve solutions from the second phase by
using a constraint optimization procedure. Computational results
show that the proposed search strategy and the model are highly ef-
ficient. Optimal solutions are always obtained for small or medium
sized problems. For large sized problems, the final results are on
average within 5.77% to 7.48% of the lower bounds.

Index Terms: 3G universal mobile telecommunications system
(UMTS), constraint programming, local search, mobile network
design.

L. INTRODUCTION

The third generation mobile system, e.g., universal mobile
telecommunications system (UMTS), will provide a wide vari-
ety of sophisticated services, over the wide service area, and will
play an important role in future telecommunications. From the
viewpoint of the mobile users, the success of UMTS systems [1]
will rely on the quality of service provided. From the service
providers’ perspective, the aim will be to provide the good ser-
vices in the most economical manner. Effective design of UMTS
networks has a significant impact on the investment costs and the
quality of service. The UMTS radio access network (UTRAN),
as illustrated in Fig. 1, consists of one or more radio network
sub-system (RNS). An RNS is a subnetwork within UTRAN
and consists of one radio network controller (RNC) and one or
more node Bs. The node B is effectively a UMTS base sta-
tion, while an RNC is comparable with a GSM base station con-
troller (BSC). Each RNC is connected to the core network by
the lu interface; RNCs are connected together with the lur in-
terface. RNCs have the task of managing the radio channels of
the connected node Bs, and concentrating or relaying their traf-
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Fig. 1. UTRAN architecture.

fic to the core network. Each node B is connected to an RNC
by the lub interface. There are some fundamental limits on the
number of node Bs that can be supported by each RNC [2]. In a
UMTS network, the area of coverage is geographically divided
into cells. Each cell uses a node B for communications among
mobile users. A handover occurs when a mobile user is in the
overlapping cell coverage area and carries out the required up-
dates. When a handover occurs between two cells linked to the
same RNG, it is called a simple handover, because there are few
necessary updates. On the other hand, a complex handover de-
scribes a handover between two cells related to different RNCs
because, in this case, the update procedures consume more re-
sources than in the case of a simple handover. Note that the
concepts of node Bs and cells are used interchangeably in this
paper.

If the handover frequency between adjacent cells is very high,
it is then reasonable to keep these cells in the same RNS, and
vice versa. At the same time, a further cost efficiency can be
achieved by using minimum number of RNCs. Reducing the
number of RNCs can not only reduce the investment on RNCs,
but also the cost on implementation of lur interfaces. Both prob-
lems can be integrated in a single model. Thus the model could
be summarized as follows. Given a set of node Bs and the poten-
tial locations of RNCs, the objective is to find a set of RNCs and
their locations, as well as assigning node Bs to RNCs in such a
way that minimizes an objective function and satisfies a set of
constraints. The objective function is composed of a physical
link related component and a handover related cost component.
The assigning node Bs must take into account RNC’s capacity
constraints, which limit the number of node Bs and total traffic
an RNC can handle.

We will build a constraint-based model for this problem. One
of the key ideas behind the constraint-based model is the use
of constrained variables with a larger domain, while the cor-
responding integer programming model for this problem is the
use of a 0—1 binary variable [3]. Although the two models serve
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the same purpose, based on the complexity analysis for the two
models, the constraint-based model is found to be more effi-
cient for our problem. To solve the constraint-based model ef-
ficiently, we propose a hybrid search strategy which consists of
three phases. The first phase is to find a good initial solution by
using the constraint satisfaction method [4]. The second phase
uses local search algorithms [5], to improve the solutions from
the first phase. The third is called post optimization phase. The
best objective function value obtained in local search is used as
the upper bound. Thus, local search provides a method for prun-
ing the search space. We use a standard constraint programming
search procedure to post optimize the solutions. It is believed
that the hybrid search method can be applied to a wide range of
NP-hard problems [6] which are subject to intrinsic combinato-
rial growth.

Similar models have been proposed in the literature. Mer-
chant and Sengupta [7] propose an integer programming model
for cell assignment problem in PCS network, which is solved
by a proposed heuristic algorithm. Pierre and Houeto [8] ap-
proach the same cell assignment problem by using tabu search.
Amaldi et al. [9], [10] propose discrete optimization models and
algorithms aimed at supporting the decisions in the process of
planning where to locate new node Bs. These models consider
the signal-to-interference ratio as quality measure and capture
at different levels of detail the signal quality requirements and
the specific power control mechanism of the WCDMA air in-
terface. Demirkol ef al. [11] propose a mobile location area
planning problem as a discrete optimization problem, which is
efficiently solved by a heuristic based on simulated annealing
technique. The constraint-based model proposed in this paper
differs from previous research in that it is not a 3G radio part
problem as in [9] and [10] and a location area planning problem
as in [11], although there are some similarities in problem for-
mulations and solution processes. The constraint-based model
also differs from the models proposed in [7] and [8], because it
sites RNCs and assigns node Bs simultaneously while the mod-
els in [7] and [8] do not.

This paper is organized as follows. In Section II, we present
a constraint-based design model. Based on the complexity anal-
ysis, the constraint-based design model stands out as the bet-
ter choice. In Section III, we propose a hybrid search strategy.
The first subsection of Section III illustrates the constraint sat-
isfaction method to generate good initial feasible solutions for
our problem; the second subsection is dedicated to the descrip-
tion of local search algorithms; the third subsection lists the post
optimization procedure. In Section IV, we present the detailed
results of an extensive experimental evaluation.

II. PROBLEM FORMULATION

In this section, we present a constraint-based formulation,
which define the constraint-based decision variables, design
constraints, and the objective function for mobile network de-
sign, and formulate the task as a discrete optimization problem.

A. Decision Variables

In this constraint-based model, we create several arrays of in-
teger variables. These arrays of integer variables are extensible.

They can also be organized into matrices. The constrained de-
cision variable array assign is used to store the number of the
RNC to which each cell is assigned. The array assign contains
one element for each cell. The value of a variable from the array
assign indicates the RNC that serves the cell corresponding to
that element. The 01 binary variable array open is used to store
the values that indicate whether an RNC is installed or not. The
numerical array linkcosts is used to store the monthly leasing
cost of establishing a physical link from the chosen RNC. The
numerical array handcosts is used to store the handover cost be-
tween cells, while the numerical array installcosts represents the
monthly amortization cost for each open RNC.

B. Design Constraints

Let n be the number of node Bs to be assigned to m potential
locations of RNCs. The locations of node Bs and potential loca-
tions for installing RNCs are fixed and known. Let £;; take the
value 1 if node Bs 7 and j are both connected to the same RNC
and the value 0 if node Bs ¢ and j are connected to different
RNCs.

(D

The variable array #;; is introduced as intermediate variable
array in the constraint-based formulation for the purpose of con-
venience. The logical operator == is used to compare the val-

ti; = (assignli] == assign[j]) fori, j=1,---,n.

- ues of assignli] and assign[j]. Let t;; take 1 if both values

are equal, and O otherwise. The constraint-based model uses
variables of the same form open/[j] to specify whether an RNC
is installed at site j. However, it is not possible to express the
problem constraints as linear constraints with this choice of vari-
ables, and features from constraint programming in obtaining
concise and clear models are used instead. An important feature
is to use variables or expressions involving variables to index
arrays [12]. Thus, constraints describing that RNC &k must be
installed if it serves the cell 7 can be expressed as

2

If ; denotes the number of calls per time unit destined to cell
i, the limited traffic-handling capacity M, of RNC & imposes
the following constraints.

open[assignli]] =1 fori=1,--- ,n.

Z)\i(assign[z'] ==k} < Myopenlk] fork=1,--- ,m.
i—1
3

According to constraints (3), the total load of all cells, which
are assigned to RNC £ is less than the traffic handling capacity
M;, of the RNC. The constraints (4) say that the total number of
connections to RNC & can not exceed its total number of ports
Ng.

Z(assign[i] ==k) < Npopenlk] fork=1,--- ,m. (4)

i=1

C. Objective Function

The objective function establishes a relationship between the
objective function f itself and other constrained variables and
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is represented in (5). The first term of the objective function
uses the variable assign|[i] to index the array linkcosts. Because
our purpose is to minimize the objective function, each modi-
fication of this objective function propagates its effects to the
other variables, and any modification of a constrained variable
propagates to the objective function as well. These two essential
processes eliminate parts of the search space that won’t produce
better solutions [4]. Our 3G mobile network design problem can
be formulated as a discrete optimization problem.

Minimize f = Zlinkcost[i,assign[i]]
i=1

+ Z open|klinstallcost|k]
k=1

+ Z Z(l — ti;)handcost|i, j].  (5)
i=1 j=1

Subject to the constraints (1)-(4).

D. Comparison with Mathematical Programming Model

We formulate a constraint-based model for this problem. For
the comparative purpose, the corresponding mathematical inte-
ger programming decision variables are also presented as fol-

lows.
|1, ifcelliassigned to RNC k
Tik = { 0, otherwise. (6)
| 1, if an RNC installed at & 7
Y = 0, otherwise. M

The data representations for two models are the same. The basic
principle of the integer programming model for this problem is
the use of 0—1 binary variables. In contrast, one of the key ideas
behind the constraint programming model is the use of con-
strained variables with a larger domain. To evaluate the combi-
natorial complexity of the mathematical integer model, we con-
sider the maximum number of configurations of the model. If
the search space were represented as a binary tree, that is, the
worst case complexity of a generate and test algorithm, assume
nm binary variables x;; with domain [0, 1] such that z;, = 1 if
cell 7 connects to RNC &, where n and m represent the number
of node Bs and potential locations for installing RNCs, respec-
tively. The maximum number of configurations is 2™ .

The proposed constraint-based model reduces the solution
search space significantly, because it uses fewer decision vari-
ables by using constraint programming formulation. In con-
straint programming, the decision variables are typically rep-
resented by constrained variables, which are practical ways of
cutting down the number of decision variables and thus reduc-
ing the size of the model and its search space [13]. Because the
size of search space is polynomial to the domain size of con-
strained variables, but exponential to the number of constrained
variables, we can reduce the complexity of our problem as fol-
lows. Create n constrained integer variables assign[i] with do-
main [1, m], so that assign[i] = j if cell < connects RNC j. In
this constraint-based model, the maximum number of solutions
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is m™. For example, if n = m = 10, the mathematical inte-
ger programming model has a maximum solution space of 210,
which is around 103°, while the constraint-based model has a
maximum solution space of 101, This value is much smaller
than 10%° of the mathematical integer model.

III. HYBRID SEARCH STRATEGY

The proposed hybrid search strategy consists of three stages.
In the first stage, a good feasible solution to the problem is found
by using constraint satisfaction method {12] embedded with a
problem-specific'search guidance. After the solution with a spe-
cific objective function value can be found, the second stage is
to apply a good local search procedure, such as tabu search, sim-
ulated annealing, or greedy algorithm, to improve this solution.
The last stage is to make an improvement to the solution derived
from the second stage. The best objective function value ob-
tained from the second stage is used as the upper bound, then a
constraint optimization procedure is applied to improve the so-
lution.

A. Constraint Satisfaction

With regards to optimization, constraint satisfaction methods
are often applied in situations where a quick feasible solution to
a problem is required, as opposed to finding a provably optimal
solution, or a feasible solution is hard to find, such as a nonlin-
ear combinational integer problem. If our problem is regarded
as a constraint satisfaction problem, the problem can be defined
formally by using some of the terminology of mathematical pro-
gramming. Given a set of n decision variables 1, x>, -« , Ty,
the set D of allowable values for each decision variable z;, j =
1,---,mn,is called the domain of the variable x;. The domain of
a decision variable can be any possible set, operating over any
possible set of symbols. We can define a constraint as a mathe-
matical function f : Dy x Dy x --- x D,, — {0, 1} such that
flxy, 22, ,2,) = 1if and only if f(z1,22,- - ,2,) = 1
is satisfied. Using this functional notation, we can then define
a constraint satisfaction problem as follows. Given n domains
D,Dy,---,D, and f1, fo, -, fn, find 21,22, -+, z, such
that f(z1,22, - ,2,) = land z; € D;forall 1 < k < m,
1 < 7 < n. Note that a constraint satisfaction problem is only
a feasibility problem, and that no objective function is defined.
A solution to a constraint satisfaction problem is simply a set of
values of the variables such that the values are in the domains of
the variables, and all of the constraints are satisfied.

Consider our problem of assigning node Bs to RNCs, while
simultaneously deciding which RNCs to open, subject to a
number of constraints. This is an NP-hard combinatorial op-
timization problem. In order to have an initial feasible solution
quickly, it is desirable to formulate the problem as a constraint
satisfaction problem. Thus, an initial solution may be found
by using the constraint propagation and domain reduction al-
gorithm [13]. However, in many cases, simple propagation of
constraints to reduce the domains of variables is not sufficient to
get a unique value for each of the variables [12]. In other words,
propagation and reduction may not be enough to find a unique
solution to the problem.

There are some methods that are applicable in such a situation
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to search for a good feasible solution to a problem. A common
search method in constraint programming performs as follows
[14]. First, takes arrays of constrained variables; then, as long
as there exists any unknown variables, choose one of those vari-
ables; choose a value to assign to this variable; propagate the
effects of that binding. However, there is a hidden problem. In
general, we don’t know which value in the domain is consistent
with the constraints. If that binding leads to inconsistencies, it
must be undone and another value must be tried. This activity of
undoing a trial and returning to a previous state to make another
effort is called as backtracking. It is obvious that the binding of
a variable blindly is not efficient and flexible. In order to effi-
ciently search for a solution, it is necessary to have a good search
strategy which normally can eliminate a great many possibilities
sooner. In this paper, a good search strategy is to choose first the
variable with the smallest domain. Therefore, the hybrid search
strategy for a solution to our problem favors node Bs located
near an RNC since the cost of serving them would be mini-
mal. The capacity of an RNC is deduced automatically from
the number of node Bs associated with it. Each node B has a set
of RNC:s still available for it, with associated serving costs. The
proposed strategy chooses a node B with the smallest number of
available open RNCs (an open RNC is available if it has suffi-
cient remaining capacity to satisfy the node B’s demand). Once
a node B has been selected, the problem is to assign to it the
RNC corresponding to the least possible cost. It is implemented
as follows. First, assign the least possible cost to the constrained
variable linkcosts. The constraints of the problem restrict the set
of RNCs to the one with the least associated costs. If this choice
fails, the chosen RNC is removed from the domain, and the sec-
ond least cost possible RNC is chosen, and execution proceeds.
It is clear that the solution found by this search strategy often
has the property of local minimum.

B. Local Search Optimization

We now present the second stage of the hybrid search strategy.
This stage is based on local search algorithms, such as greedy
algorithm, tabu search or simulated annealing. Local search is a
mechanism for searching for improvements to the solution of a
problem by making small changes to the current solution. This
new solution is tested against the problem constraints for fea-
sibility, and its objective function cost is computed. If the new
solution is feasible and has reduced cost, it is accepted as the
current one, otherwise the current solution remains unchanged.

An important concept in local search algorithms is the neigh-
borhood definition. A subset of the solution space S of a prob-
lem, designated as N(z), may be associated with each point
x € S. N(z) is referred as the neighborhood of z. At each
step, most search algorithms for optimization proceed from the
current point x by considering a point or a set of points in N{x).
Local search algorithms are then differentiated from each other
by the way in which the considered points are accepted. In this
paper, each point in the solution space consists of a set of RNCs
and an assignment pattern of node Bs to RNCs. Simple local
search algorithms such as greedy algorithms move from point
to neighboring point, accepting each successive point as a solu-
tion only if it has a lower cost than the current solution. This
causes entrapment in the point with the lowest objective func-

tion value in the neighborhood—a local optimum. ln order to
escape from a local optimum, local search algorithms based on
meta-heuristics, such as tabu search or simulated annealing, are
commonly used.

The idea of tabu search [5] is to explore the search space
through a sequence of moves. At each iteration of the algo-
rithm, a solution is selected as the best one, even if the selected
solution has the degrading cost. This means that, in a local min-
imum, tabu search will move out, since it can accept cost de-
grading moves. A set of moves is applied on this solution, and
hence, a number of neighbouring solutions are obtained. A sub-
set of these solutions (moves) is classified as forbidden, which is
called the tabu tenure. The tabu tenure holds information on the
solutions recently visited and forbids the search from moving
back to a solution which is the same as (or shares some features
with) one it has recently visited. The length of the tabu tenure
is usually important to the performance of tabu search. More-
over, a subset of the tabu moves may be overridden, according
to the aspiration criteria, which can maintain some promising
solutions.

C. Post Optimization and Lower Bounds

The solutions from local search algorithms are not guaran-
teed to be optimal. This means that the solutions can still be
improved somehow. Generally speaking, there are two ways for
the post-optimization to make improvements. The first is to op-
timize any objective or to enhance constraint satisfaction in case
of constraint violation by fine tuning some parameters of the
problem. The second is to use the best objective function value
obtained in a local search algorithm as the upper bound. In this
case, the local search algorithm provides a method for pruning
the search space used by a follow-up search method which is
used to improve the solution. By running this search method,
such as branch-and-bound, for certdin amount of time to im-
prove the solution obtained from the local search algorithm, the
intermediate results can be seen as improvements.

In this paper, when the solutions from a local search algo-
rithm are obtained, the best solution is used as the upper bound.
A standard constraint programming search procedure [12] is
used to search for an improvement. This standard search pro-
cedure is described as follows. Let z represent a feasible point
in the search space, and f{x) its corresponding objective func-
tion. The search space can then be pruned by adding the con-
straint f(y) > f(z) to the problem, and continuing the search.
The constraint that is added specifies that any new feasible point
must have a better objective value than the current point. Prop-
agation of this constraint may cause the domains of the deci-
sion variables to be reduced, thus reducing the size of the search
space. As the search progresses, new points will have progres-
sively better objective values. The procedure concludes until
no feasible point is found. When this happens, the last feasible
point can be taken as the optimal solution. If this does not hap-
pen for a long period of time, an intermediate sclution can be
obtained as an improvement by interrupting the search process.
If the hybrid search strategy does not find a global optimum, it
is necessary to find a lower bound to evaluate the quality of the
solution found. In our case, the lower bound is obtained by us-
ing the CPLEX linear programming optimizer [15] to solve our
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Table 1. Test cases used to execute the plan of experiments.

Test No. of potential No. of No. of
cases | locations for RNCs | node Bs | sample tests
1 20 50 30
2 30 100 30
3 40 150 30
4 50 200 30
5 80 300 30

problem without considering the integrality constraints.

IV. EXPERIMENTAL RESULTS

A. Test Cases

Computational experiments are carried out on 5 sets of test
cases, with the number of cells varying between 50 and 300 and
the number of RNCs between 20 and 80. Each test case contains
30 test samples as shown in Table 1. These test case sizes are
larger than the ones in (7] and [8], and difficult enough to eval-
uate the complexity of the problem. These test cases are gen-
erated by a MATLAB program by supposing that the cells are
arranged on a hexagonal grid of almost equal length and width.
The node B antennas are located at the center of cells and dis-
tributed evenly on the grid. However, when two or several an-
tennas are too close to each other, the antenna arrangement is
rejected and a new arrangement is chosen. The locations where
RNCs could be potentially located are generated randomly with
a uniform distribution. It is assumed that a RNC, with a single
cabinet supporting up to 180 node Bs, 310 Mbps of raw data
throughput, is used in our simulation. It is also assumed that all
potential locations have the same monthly amortization building
cost, that is, installcosts[k] = $1,000. The cost of connecting
node B to RNC, denoted by the matrix linkcosts, is assumed to
be proportional to the distance between them. We take a pro-
portionality coefficient equal to the unit. The handcosts can be
calculated by using the following method. The call rate ; of
cell ¢ follows a gamma law of average and variance equal to the
unit. The call durations inside cells are distributed according
to an exponential law of parameter equal to 1. If cell j has w
neighbors, the (0, 1) interval is divided into w + 1 sub-intervals
by choosing w random numbers distributed evenly between 0
and 1. At the end of the service period in cell j, the call could
be either transferred to the i-th neighbour (i = 1,--- ,w) with
a handover probability 7;; equal to the length of the (w + 1)-th
interval. To find the call volumes and the rates of coherent han-
dovers, the cells are considered as M/M/1 queues forming a
Jackson’s network [16]. The incoming rates ¢; in cells are ob-
tained by solving the following system.

aivz%vji:% fori=1,---,n. (8)
j=1

If the incoming rate «v; is greater than the service rate, the
distribution is rejected and chosen again. The handover rate is
defined as

hij = )\j’Yij fori = 1,'-‘ , 1.

®
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Table 2. Average performance of post-optimization and relative
distance between final solutions and optima or lower bounds.

Test | Improvement from | Distance between final
cases | post-optimization | solutions and optima*
process (%) or lower bounds (%)
1 0.68 0.00=
2 0.81 0.00x
3 5.40 0.00%
4 591 5.77
5 6.23 7.48

B. Performance of the Hybrid Search Strategy

From the previous experiments [18], we conclude that tabu
search performs best and is more stable than simulated anneal-
ing and greedy algorithms. Thus, the best objective function
value from tabu search is set as the upper bound for the con-
straint programming optimization procedure. The constraint
programming optimization procedure provided by ILOG Solver
[17] is run over the solutions immediately from tabu search.
During the process of searching for improvements, we set limits
of 30 minutes on the amount of time spending on each sample
test run. For each of five test cases, 30 sample tests are run.
When it reaches that time limit, the solution returned from the
search is regarded as the best solution. In order to evaluate how
good the best solution is, it is necessary to compare it to the op-
timal solution or a lower bound. Through the post optimization
process, optimal solutions are obtained for test cases 1, 2, and
3 for every single sample test, while no optimal solution could
be obtained for every sample test of test case 4 and 5 within 12
hours. It is difficult to evaluate good lower bounds for larger
sized instances. Such an evaluation becomes time-consuming
as the problem instances increase in size. In this paper, lower
bounds are obtained by using the CPLEX linear programming
optimizers [15] by relaxing the integrality constraints on the de-
cision variables x;;, and vy from the corresponding mathemati-
cal programming formulation. Table 2 shows the average results
from this post-optimization process.

Because this problem is NP-hard, this implies that it is
not guaranteed to have a feasible solution in a reasonable time.
Mathematical integer programming method has been applied to
the simplified version of our problem [7]. Numerical results
show that the mathematical integer programming method fails to
find any solution after the problem sizes goes beyond 35 cells,
which is much smaller than our test cases in Table 1. The re-
sults also show that when the mathematical integer program-
ming method works, the CPU time requirements is high, while
the heuristic method in [7] requires very little time. The simu-
lation results from a similar problem [19] also illustrate that for
relatively larger instances, the mathematical integer program-
ming method could not find a feasible solution within days,
while a simulated annealing algorithm is able to quickly find
near-optimal solutions for all large instances. Thus, our focus is
to compare the performance of the hybrid search strategy with
other existing heuristics in literature.
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C. Comparison with Other Heuristics

In order to evaluate the performance of the hybrid search strat-
egy, two types of experiments are performed. One set of experi-
ments is to compare it with the heuristics used in the special case
of our problem, which is the cell assignment problem [7], [8],
while the other set is to compare it with local search methods
with randomly generated initial input solutions of our problem.
The most important measurement criterion is the objective func-
tion value.

In [7], the authors design a heuristic, which we call H, for
solving the cell assignment problem. The cell assignment prob-
lem is a simplified version of our problem, because it assumes
that the number and locations of RNCs are predefined. In [8],
authors use tabu search for solving the same cell assignment
problem. We compare tabu search and heuristic H with our
proposed hybrid search strategy. These three methods are ex-
ecuted over a set of test cases with three different numbers of
cells (100, 200, and 300) and RNCs (3, 4, and 5) that means
the search space size is between 3100 and 5300. Varying the
RNCs’ geographical location by maintaining the number of cells
and the RNCs fixed, we obtain a different configuration. For
each configuration, 30 sample test runs are experimented. In or-
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Fig. 4. 300 cells, 5 RNCs.

Table 3. Average improvement of the proposed hybrid search strategy
over tabu search and heuristic H.

100 celis, 200 cells, 300 cells,
3 RNCs (%) | 4 RNCs (%) | 5 RNCs (%)
Tabu search 1.61 1.73 2.16
Heuristic H 2.22 2.74 3.95

der to make comparison fairly, for each sample test run, 10,000
function evaluations are performed for each heuristic. For each
of the three test cases, we analyze 10 different configurations.
Figs. 2-4 show that in most of the test configurations, the hybrid
constraint-based search strategy yields better than tabu search
and H, sometimes with big differences. Table 3 summarizes
the average improvement results. Nevertheless, given the ini-
tial large investment, the handoff and the annual maintenance
costs for large-sized mobile networks (in the order of hundreds
of millions of dollars), these small improvements translate into
a large cost saving over a long-period of time. In terms of CPU
time, for a large number of cells, tabu search is a bit faster than
heuristic H. Conversely, for smaller size problems, tabu search
is a bit slower. The hybrid search strategy is slower than both
heuristics H and tabu search. However, this is not an important
factor because designing a mobile network is not a time-critical
mission.

In order to further examine the effectiveness of the proposed
hybrid search strategy, we compare the solutions from it with
those obtained by some local search algorithms. In these exper-
iments, the initial solutions for these local search algorithms are
generated randomly with a uniform distribution. However, the
proposed hybrid search strategy uses the constraint satisfaction
method to obtain a good initial feasible solution as the input for
the immediate local search algorithm. Fig. S illustrates the av-
erage results over the sample test runs on the five test cases in
Table 1. In order to make fair comparisons, for each algorithm,
each test case is run 30 sample tests for 2,000 solution evalua-
tions for each sample test run. It is clear that the hybrid search
strategy is best-suited for this problem.
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Fig. 5. Comparison between the hybrid search strategy, simulated an-
nealing and greedy algorithm.

V. CONCLUSION

In this paper, we have proposed a new constraint-based
3G UMTS radio network design model. This constraint-based
model is more efficient in terms of the combinatorial complexity
when compared to that of the traditional mathematical model.
We have also proposed a hybrid search strategy. Computational
results show that the hybrid search strategy is more efficient than
the existing heuristics. Optimal solutions are always obtained
for small or medium sized problems. For large sized problems,
the final results are on average within 5.77% to 7.48% of the
lower bounds. It is clear that the hybrid search strategy is better-
suited for this problem.
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