• Title/Summary/Keyword: Eco-friendly Material

Search Result 550, Processing Time 0.033 seconds

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Study on the determination methods of the natural radionuclides (238U, 232Th) in building materials and processed living products (실내 건축자재 및 생활 가공제품 중 천연방사성핵종(238U, 232Th)의 농도 평가를 위한 분석법 연구)

  • Lee, Hyeon-Woo;Lim, Jong-Myoung;Lee, Hoon;Park, Ji-Young;Jang, Mee;Lee, Jin-Hong
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.149-160
    • /
    • 2018
  • A large number of functional living products are being produced for eco-friendly or health-promoting purposes. In the manufacturing process, such products could be adulterated with raw materials with high radioactivity, such as monazite and tourmaline. Thus, it is essential to manage raw materials and products closely related to the public living. For proper management, an accurate radioactivity data of the processed products are needed. Therefore, it is essential to develop a rapid and validated analytical method. In this study, the concentration of the radioactive $^{238}U$ and $^{232}Th$ in building materials (e.g., tile, cement, paint, wall paper, and gypsum board) and living products (e.g., health products, textiles, and minerals) were determined and compared by ED-XRF and ICP-MS. By comparing the results of both methods, we confirmed the applicability of the rapid screening and precise analysis of ED-XRF and ICP-MS. In addition, $^{238}U$ and $^{232}Th$ levels were relatively lower in building materials than in living products. Particularly, $^{232}Th$ content in 6 of 47 living products exceeded (maximum $8.2Bq{\cdot}g^{-1}$) the standard limit of $^{232}Th$ content in raw material ($1.0Bq{\cdot}g^{-1}$).

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.580-587
    • /
    • 2017
  • Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank (제방 환경 조건에서 베타글루칸-잔탄검 계열 바이오폴리머가 식물 생장 및 경쟁에 미치는 영향)

  • Jeong, Hyungsoon;Shin, Haeji;Jang, Ha-young;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.208-217
    • /
    • 2020
  • A biopolymer based on microorganism-derived β-glucan and xanthan gum is being studied as a new eco-friendly material that stabilizes the riverbank slope, and also promotes vegetation growth. However, it is still inconclusive whether biopolymers have a positive effect on plant performance in the riverbanks which are subjected to various climatic factors and plant competitions. For a practical ecological evaluation of the biopolymers, their effect on plant growth promotion was studied in a natural environment. Considering the relationship between competition and plant community formation, the effects of biopolymers on competition were also investigated. For four plant species (Echinochloa crus-galli, Pennisetum alopecuroides, Leonurus japonicus, and Coreopsis lanceolata), the biopolymer effects under intra/interspecific competition were tested at the riverbank (20 m × 10 m) near Samjigyo Bridge in Damyang-gun, Jeollanam-do. A biopolymer powder was mixed with water and commercial soil following the manufacturer's recommendations. The soil mixed with the biopolymer was filled in a pot or applied to the surface of the commercial soil with a thickness of 3 cm. Across the competition treatments, the biopolymer treatment promoted root growth of the target plant species and decreased the specific leaf area. The total biomass and shoot dry weight of P. alopecuroides increased in response to the biopolymer treatment. The competition treatment decreased the total biomass and shoot dry weight compared to the case without competition. Notably, such a competitive effect was similar in all the biopolymer treatments. Thus, biopolymers, when mixed with soil, promote the growth of some plant species, but do not appear to affect the competitive ability of plants.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties (인산염 농도에 따른 물성 변화로 발생하는 황색포도상구균 바이오필름 제거 현상)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.361-368
    • /
    • 2021
  • The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.