Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.4.083

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing  

Kang, Young Lim (Department of Materials Science and Engineering, Pukyong National University (PKNU))
Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET))
Park, Eun-Soo (Eloi Materials Lab (EML) Co. Ltd.)
Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University (PKNU))
Wang, Jei-Pil (Department of Metallurgical Engineering, Pukyong National University (PKNU))
Park, Woon Ik (Department of Materials Science and Engineering, Pukyong National University (PKNU))
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.4, 2020 , pp. 83-89 More about this Journal
Abstract
For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.
Keywords
Lithium-ion battery; SPS; Sputtering; Nanotransfer printing; $Li_2CO_3$;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. J. Kim, M. J. Lee, H. G. Min, S. H. Kim, J. H. Yang, H. M. Kweon, W. S. Lee, D. H. Kim, J.-H. Choi, and D. Y. Ryu, "Universal three-dimensional crosslinker for all-photopatterned electronics", Nat. Commun., 11(1), 1 (2020).   DOI
2 J. A. DeFranco, B. S. Schmidt, M. Lipson, and G. G. Malliaras, "Photolithographic patterning of organic electronic materials", Org. Electron., 7(1), 22 (2006).   DOI
3 W. Li and M. C. Marconi, "Extreme ultraviolet Talbot interference lithography", Opt. Express, 23(20), 25532 (2015).   DOI
4 S.-K. Kim, "Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography", J. Nanosci. Nanotechnol., 16(5), 5415 (2016).   DOI
5 W. I. Park, K. H. Kim, H. I. Jang, J. W. Jeong, J. M. Kim, J. S. Choi, J. H. Park, and Y. S. Jung, "Directed Self-Assembly with Sub-100 Degrees Celsius Processing Temperature, Sub-10 Nanometer Resolution, and Sub-1 Minute Assembly Time", Small, 8(24), 3762 (2012).   DOI
6 S.-J. Jeong, J. Y. Kim, B. H. Kim, H.-S. Moon, and S. O. Kim, "Directed self-assembly of block copolymers for next generation nanolithography", Mater. Today., 16(12), 468 (2013).   DOI
7 J. M. Kim, Y. Kim, W. I. Park, Y. H. Hur, J. W. Jeong, D. M. Sim, K. M. Baek, J. H. Lee, M. J. Kim, and Y. S. Jung, "Eliminating the Trade-Off between the Throughput and Pattern Quality of Sub-15 nm Directed Self-Assembly via Warm Solvent Annealing", Adv. Funct. Mater., 25(2), 306 (2015).   DOI
8 J. Zhang, K. Xiao, T. Zhang, G. Qian, Y. Wang, and Y. Feng, "Porous nickel-cobalt layered double hydroxide nanoflake array derived from ZIF-L-Co nanoflake array for battery-type electrodes with enhanced energy storage performance", Electrochim. Acta, 226, 113 (2017).   DOI
9 C. De las Casas and W. Li, "A review of application of carbon nanotubes for lithium ion battery anode material", J. Power Sources, 208, 74 (2012).   DOI
10 C. He, S. Wu, N. Zhao, C. Shi, E. Liu, and J. Li, "Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material", ACS Nano, 7(5), 4459 (2013).   DOI
11 G. H. An and H. J. Ahn, "Electrode Properties of Li-ion Batteries using TiO2-based Composite Nanowires", J. Microelectron. Packag. Soc., 18(3), 19 (2011).   DOI
12 J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. M. Yim, H.-I. Jang, J. H. Park, S. Y. Lee, and C.-O. Park, "High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching", Nat. Commun., 5(1), 1 (2014).
13 J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. S. Chae, and Y. S. Jung, "Nanotransfer Printing with sub-10 nm Resolution Realized using Directed Self-Assembly", Adv. Mater., 24(26), 3526 (2012).   DOI
14 Y. Ding, X. Guo, Y. Qian, L. Xue, A. Dolocan, and G. Yu, "Room-Temperature All-Liquid-Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting", Adv. Mater., 32(30), 2002577 (2020).   DOI
15 T. W. Park, H. Jung, Y. R. Cho, J. W. Lee, and W. I. Park, "Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film", Korean J. Met. Mater., 56(12), 910 (2018).   DOI
16 T. W. Park, Y. J. Choi, and W. I. Park, "Durability of Nano-/micro- Pt Line Patterns Formed on Flexible Substrate", J. Microelectron. Packag. Soc., 25(3), 49 (2018).   DOI
17 T. W. Park, M. H. Byun, H. S. Jung, G. R. Lee, J. H. Park, H.-I. Jang, J. W. Lee, S. H. Kwon, S. B. Hong, J.-H. Lee, Y. S. Jung, K. H. Kim, and W. I. Park, "Thermally assisted nanotransfer printing with sub-20-nm resolution and 8-inch wafer scalability", Sci. Adv., 6(31), eabb6462 (2020).   DOI
18 M. Maleki, G. A. El-Nagar, D. Bernsmeier, J. Schneider, and C. Roth, "Fabrication of an efficient vanadium redox flow battery electrode using a free-standing carbon-loaded electro-spun nanofibrous composite", Sci. Rep., 10(1), 1 (2020).   DOI
19 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-air battery: promise and challenges", J. Phys. Chem., 1(14), 2193 (2010).
20 W. Van Schalkwijk and B. Scrosati, "Advances in Lithium-Ion Batteries introduction", pp.1-5 Springer, Boston, MA (2002).
21 A. Manthiram, "A reflection on lithium-ion battery cathode chemistry", Nat. Commun., 11(1), 1 (2020).   DOI
22 L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles", J. Power Sources, 226(3-4), 272 (2013).   DOI
23 S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, and Y. H. Kim, "Development of a metal recovery process from Li-ion battery wastes", Hydrometallurgy, 79, 172 (2005).   DOI
24 J. Yao, B. Liu, S. Ozden, J. Wu, S. Yang, M.-T. F. Rodrigues, K. Kalaga, P. Dong, P. Xiao, and Y. Zhang, "3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries", Electrochim. Acta., 176, 103 (2015).   DOI
25 G. Nayaka, J. Manjanna, K. Pai, R. Vadavi, S. Keny, and V. Tripathi, "Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids", Hydrometallurgy, 151, 73 (2015).   DOI
26 W. Gao, X. Zhang, X. Zheng, X. Lin, H. Cao, Y. Zhang, and Z. Sun, "Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process", Environ. Sci. Technol., 51(3), 1662 (2017).   DOI
27 Y. Wang and W. Zhu, "Micro/nano-structured Li4Ti5O12 as high rate anode material for lithium ion batteries", Solid State Ionics, 349, 115297 (2020).   DOI
28 P. Kumar, C. L. Berhaut, D. Zapata Dominguez, E. De Vito, S. Tardif, S. Pouget, S. Lyonnard, and P. H. Jouneau, "Nano-Architectured Composite Anode Enabling Long-Term Cycling Stability for High-Capacity Lithium-Ion Batteries", Small, 16(11), 1906812 (2020).   DOI
29 H. J. Kim, M. H. Seo, M. H. Park, and J. P. Cho, "A critical size of silicon nano-anodes for lithium rechargeable batteries", Ange. Chem. Inter. Ed., 49(12), 2146 (2010).   DOI
30 J. S. Park, S. S. Hyeon, S. H. Jeong, and H.-J. Kim, "Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity", J. Ind. Eng. Chem., 70, 178 (2019).   DOI
31 I. Y. Kang, J. Y. Jang, M.-S. Kim, J.-W. Park, J.-H. Kim, and Y. W. Cho, "Nanostructured silicon/silicide/carbon composite anodes with controllable voids for Li-ion batteries", Mater. Des., 120, 230 (2017).   DOI
32 S. Ouyang, Y. Xie, D. Wang, D. Zhu, X. Xu, T. Tan, J. DeFranco, and H. H. Fong, "Photolithographic patterning of highly conductive PEDOT: PSS and its application in organic light-emitting diodes", J. Polym. Sci. B: Polym. Phys., 52(18), 1221 (2014).   DOI