DOI QR코드

DOI QR Code

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology

생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용

  • 김인수 (한국해양대학교 공과대학 환경공학과) ;
  • 하신영 (한국해양대학교 공과대학 환경공학과) ;
  • 고성철 (한국해양대학교 공과대학 환경공학과)
  • Received : 2015.12.07
  • Accepted : 2015.12.21
  • Published : 2015.12.31

Abstract

Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

국내의 경우 항만과 연안해역 준설로 인하여 연간 수 천만톤 이상 준설토사가 발생하며 매년 증가하고 있으나, 대부분 투기장에 장기간 방치되며, 더구나 2012년부터 런던협약에 의해 해양투기가 금지되고 있어 환경친화적인 준설토처리 및 재활용기술개발이 시급하다. 준설토 재활용기술에서는 중간처리과정후 발생하는 현탁수(유기물과 중금속 함유 $10{\mu}m$ 미만 미세오염퇴적물 포함)의 처리가 필요한데 현재 이 기술은 연구되어 있지 않다. 본 연구에서는 복합유용미생물제제(BM-S-1)을 이용하여 미세해양오염퇴적물($10{\mu}m$ 이하 입자)내 오염되어 있는 유기물질, 영양염류 및 중금속을 정화하여 배출함으로써 오염퇴적물 정화처리수 방류수질 기준을 충족하고자 하였다. BM-S-1 복합미생물제제를 이용한 해양준설토의 친환경정화시스템으로서 일일 50 L 처리용량의 Lab scale 실험장치를 HRT 6.5일, BOD 용적부하 $0.2-0.6kg/m^3{\cdot}day$의 조건으로 생물반응기를 100일 이상 운전하였다. SCOD, T-N 및 T-P의 제거효과는 각각 96.1%, 92.0% 및 79.0%로 나타나 오염미세퇴적토 내의 유기물의 처리효과가 매우 양호하였다. 또한 몇 가지의 중금속(Zn, Ni 및 Cr) 처리에도 효과적이었다. 아울러 물리적으로 분리하기 어려운 $10{\mu}m$ 이하의 미세토양의 고액분리가 가능함을 확인하였다. 미생물군집구조를 분석한 결과 Flavobacteria 및 Gammaproteobacteria 강이 매우 우점하였으며, 이들에 속한 미생물종들은 해양 내의 각종유기물(다당류, 단백질 및 기타 생물중합체)을 처리하는 것으로 알려졌다. 따라서 본 실험에서 사용된 BM-S-1 미생물제제와 처리시스템은 고농도의 염분이 함유되어있는 유기물 및 중금속 오염 해양퇴적물 정화에 효율적으로 적용가능한 것으로 판단되며, 정화, 분리된 미세해양퇴적물은 목적에 맞게 재사용 가능할 것으로 사료된다.

Keywords

References

  1. American Public Health Association (APHA). 2005. American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; Authors: Washington, DC, USA.
  2. Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101. https://doi.org/10.1186/1471-2180-10-101
  3. Cui, Z., Xu, G., Gao, W., Li, Q., Yang, B., Yang, G., and Zheng, L. 2014. Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains. Int. Biodet. Biodegrad. 91, 45-51. https://doi.org/10.1016/j.ibiod.2014.03.005
  4. Dick, L.K., Bernhard, A.E., Brodeur, T.J., Santo Domingo, J.W., Simpson, J.M., Walters, S.P., and Field, K.G. 2005. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbol. 71, 3184-3191. https://doi.org/10.1128/AEM.71.6.3184-3191.2005
  5. Dos Santos, H.F., Cury, J.C., do Carmo, F.L., dos Santos, A.L., Tiedje, J., van Elsas, I.J., Rosado, A.S., and Peixoto, R.S. 2011. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6, e16943. https://doi.org/10.1371/journal.pone.0016943
  6. Hur, M., Kim, Y., Song, H.R., Kim, J.M., Choi, Y.I., and Yi, H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbol. 77, 7611-7619. https://doi.org/10.1128/AEM.06102-11
  7. Joostea, P.J. and Hugob, C.J. 1999. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. Int. J. Food Microbiol. 53, 81-94. https://doi.org/10.1016/S0168-1605(99)00162-2
  8. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  9. Kim, I.S., Ekpeghere, K., Ha, S.Y., Kim, S.H., Kim, B.S., Song, B., Chun, J., Chang, J.S., Kim, H.G., and Koh, S.C. 2013. An eco-friendly treatment of tannery wastewater using bioaugmentation with a novel microbial consortium. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 48, 1732-1739. https://doi.org/10.1080/10934529.2013.815563
  10. Kim, I.S., Ekpeghere, K.I., Ha, S.Y., Kim, B.S., Song, B., Chun, J., Kim, J.T., Kim, H.G., and Koh, S.C. 2014. Full-scale biological treatment of tannery wastewater using the novel microbial consortium BM-S-1. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 49, 355-364. https://doi.org/10.1080/10934529.2014.846707
  11. Kim, B.S., Kim, J.N., Yoon, S.H., Chun, J., and Cerniglia, C.E. 2012. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 18, 310-320. https://doi.org/10.1016/j.anaerobe.2012.01.003
  12. Kim, Y.J., Nam, K.P., Lee, S.B., Kim, B.K., Kwon, Y.H., and Hwang, I.S. 2010. A tiered approach of washing and stabilization to decontaminate and recycle dredged river sediment. J. Soil Groundwater Environ. 15, 47-54.
  13. Kim, S.J., Park, S.J., Yoon, D.N., Park, B.J., Choi, B.R., Lee, D.H., Roh, Y., and Rhee, S.K. 2009. Marinobacterium maritimum sp. nov., a marine bacterium isolated from Arctic sediment. Int. J. Syst. Evol. Microbiol. 59, 3030-3034. https://doi.org/10.1099/ijs.0.009134-0
  14. Lee, M.K., Bae, W.K., Um, I.K., and Jung, H.S. 2004. Characteristics of heavy metal distribution in sediments of Youngil Bay, Korea. J. Kor. Soc. Environ. Eng. 26, 543-551.
  15. Lee, J.K., Kim, S.K., Song, J.H., and Lee, T.Y. 2009. Evaluation of organic sediments qualities for the urban streams in the Busan city. J. Kor. Soc. Environ. Eng. 31, 975-982.
  16. Li, H., Zhang, Q., Wang, X.L., Ma, X.Y., Lin, K.F., Liu, Y.D., Gu, J.D., Lu, S.G., Shi, L., Lu, Q., et al. 2012. Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresour. Technol. 124, 129-136. https://doi.org/10.1016/j.biortech.2012.08.033
  17. Masayo, A.M., Masaru, M., Yosuke, K., and Kazuhide, Y. 1992. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov. bacteria that decompose algal polysaccharides. Int. J. Syst. Evol. Microbiol. 42, 621-627.
  18. Ministry of Land, Infrastructure and Transport. 2010a. Manual of Advancing Ministry of Land, Infrastructure and Transport. 2010. Manual of Advancing Remediation and Restoration Projects for Polluted Coastal Sediments.
  19. Ministry of Land, Infrastructure and Transport. 2010b. Report on Treatment Alternatives and Technology for Polluted Coastal Sediments [III].
  20. Nedashkovskaya, O.I., Kim, S.B., Vancanneyt, M., Snauwaert, C., Lysenko, A.M., Rohde, M., Frolova, G.M., Zhukova, N.V., Mikhailov, V.V., Bae, K.S., et al. 2006. Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. Int. J. Syst. Evol. Microbiol. 56, 161-167. https://doi.org/10.1099/ijs.0.63875-0
  21. Rocchetti, L., Beolchini, F., Hallberg, K.B., Johnson, D.B., and Dell'Anno, A. 2012. Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments. Marine Poll. Bull. 64, 1688-1698. https://doi.org/10.1016/j.marpolbul.2012.05.038
  22. Sekwang Interdisciplinary Engineering Consulting Inc. 2006. Preliminary Investigative Risk Assessment of Dredged Materials, Workshops for Management, Dredged Materials Treatment and Reuse.
  23. Stevenson, A.G. 2001. Metal concentrations in marine sediments around scotland:a baseline for environmental studies. Marine Environ. North East Atlantic Margin 21, 8-10.
  24. Strong, L.C., Gould, T., Kasinkas, L., Sadowsky, M.J., Aksan, A., and Wackett, L.P. 2013. Biodegradation in waters from hydraulic fracturing: chemistry, microbiology, and engineering. J. Environ. Eng. 10, 1061.
  25. Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105-108. https://doi.org/10.1126/science.1208344
  26. Yoon, G. and Jeong, W. 2008. Assessment of contamination of harbor dredged materials for beneficial use. J. Korean Geo-Environ. Society 24, 15-25.
  27. Zhang, Y.H., Liu, J.W., Tang, K.H., Yu, M., Coenye, T., and Zhang, W.H. 2015. Genome analysis of Flaviramulus ichthyoenteri $Th78^T$ in the family Flavobacteriaceae: insights into its quorum quenching property and potential roles in fish intestine. BMC Genomics 16, 38. https://doi.org/10.1186/s12864-015-1275-0