Browse > Article
http://dx.doi.org/10.15230/SCSK.2021.47.4.361

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties  

Song, Sang-Hun (LG Household & Health Care Ltd)
Hwang, Byung Woo (LG Household & Health Care Ltd)
Son, Seong Kil (LG Household & Health Care Ltd)
Kang, Nae-Gyu (LG Household & Health Care Ltd)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.47, no.4, 2021 , pp. 361-368 More about this Journal
Abstract
The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.
Keywords
biofilm; S. aureus; AFM; TOF-SIMS; phosphate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. W. Barry, Breaching the skin's barrier to drugs, Nature Biotechnol., 22, 165 (2004).   DOI
2 S. Mukherjee, R. Mitra, A. Maitra, S. Gupta, S. Kumaran, A. Chakrabortty, and P. P. Majumder, Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome, Sci. Rep., 6, 36062 (2016).   DOI
3 K. Nakase, H. Nakaminami, and Y. Takenaka, N. Hayashi, M. Kawashima, and N. Noguchi, Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan, J. Med. Microbiol., 63(Pt 5), 721 (2014).   DOI
4 D. Pinto, E. Sorbellini, B. Marzani, M. Rucco, G. Giuliani, and F. Rinaldi, Scalp bacterial shift in Alopecia areata, PLoS One, 14(4), e0216330 (2019).   DOI
5 J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, 284(5418), 1318 (1999).   DOI
6 L. Ma, A. Guichard, Y. Cheng, J. Li, O. Qin, X. Wang, W. Liu, and Y. Tan, Sensitive scalp is associated with excessive sebum and perturbed microbiome, J. Cosmet. Dermatol., 18(3), 922 (2019).   DOI
7 X. Hua, M. J. Marshall, Y. Xiong, X. Ma, Y. Zhou, A. E. Tucker, Z. Zhu, S. Liu, and X. Y. Yu, Two- dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry, Biomicrofluidics, 9(3), 031101 (2015).   DOI
8 W. Francuzik, K. Franke, R. R. Schumann, G. Heine, and M. Worm, Propionibacterium acnes abundance correlates inversely with Staphylococcus aureus: Data from atopic dermatitis skin microbiome, Acta Derm. Venereol., 98(5), 490 (2018).   DOI
9 A. C. Jahns, H. Eilers, and O. A. Alexeyev, Transcriptomic analysis of Propionibacterium acnes biofilms in vitro, Anaerobe, 42, 111 (2016).   DOI
10 C. Iwata, N. Akimoto, T. Sato, Y. Morokuma, and A. Ito, Augmentation of lipogenesis by 15-deoxy-delta12, 14- prostaglandin J2 in hamster sebaceous glands: identification of cytochrome P-450-mediated 15-deoxy-delta12,14-prostaglandin J2 production, J. Invest. Dermatol., 125(5), 865 (2005).   DOI
11 B. Siu-Yin, E. X. Ho, C. Chu, S. Ramasamy, M. Bigliardi-Qi, P. Florez de Sessions, and P. L. Bigliardi, Microbiome in the hair follicle of androgenetic alopecia patients, PLoS One, 14(5), e0216330 (2019).   DOI
12 E. Filaire, A. Dreux, C. Boutot, E. Ranouille, and J. Y. Berthon, Characteristics of healthy and androgenetic alopecia scalp microbiome: Effect of Lindera strychnifolia roots extract as a natural solution for its modulation, Int. J. Cosmet. Sci., 42(6), 615 (2020).   DOI
13 C. C. Zouboulis, Propionibacterium acnes and sebaceous lipogenesis: a love-hate relationship?, J. Invest. Dermatol., 129(9), 2093 (2009).   DOI
14 K. Iinuma, T. Sato, N. Akimoto, N. Noguchi, M. Sasatsu, S. Nishijima, I. Kurokawa, and A. Ito, Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro, J. Invest. Dermatol., 129(9), 2113 (2009).   DOI
15 S. V. Nuffel, M. Quatredeniers, A. Pirkl, J. Zakel, J. P. Le Caer, N. Elie, Q. P. Vanbellingen, S. J. Dumas, M. K. Nakhleh, M. R. Ghigna, E. Fadel, M. Humbert, P. Chaurand, D. Touboul, S. Cohen-Kaminsky, and A. Brunelle, Multimodal imaging mass spectrometry to identify markers of pulmonary arterial hypertension in human lung tissue using MALDI-ToF, ToF-SIMS, and hybrid SIMS, Anal. Chem., 92(17), 12079 (2020).   DOI
16 Y. Fu, Y. Zu, L. Chen, T. Efferth, H. Liang, Z. Liu, and W. Liu, Investigation of antibacterial activity of rosemary essential oil against Propionibacterium acnes with atomic force microscopy, Planta Med., 73(12), 1275 (2007).   DOI
17 T. Gan, X. Gong, H. Schonherr, and G. Zhang, Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy, Biointerphases, 11(4), 041005 (2016).   DOI
18 P. S. Stewart and J. William, Antibiotic resistance of bacteria in biofilms, Lancet, 358(9276), 135 (2001).   DOI
19 J. H. Lim, Y. Jeong, S. H. Song, J. H. Ahn, J. R. Lee, and S. M. Lee, Penetration of an antimicrobial zinc-sugar alcohol complex into Streptococcus mutans biofilms, Sci. Rep., 8, 16154 (2018).   DOI
20 I. Kolodkin-Gal1, D. Romero, S. Cao, J. Clardy, R. Kolter, and R. Losick, d-Amino acids trigger biofilm disassembly, Science, 328(5978), 627 (2010).   DOI
21 G. J. M. Christensen, C. F. P. Scholz, J. Enghild, H. Rohde, M. Kilian, A. Thuermer, E. Brzuszkiewicz, H. B. Lomholt, and H. Brueggemann, Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis, BMC Genomics, 17, 152 (2016).   DOI
22 P. Roy, S. Amdekar, A. Kumar, R. Singh, P. Sharma, and V. Singha, In vivo antioxidative property, antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl) Miers, J. Ethnopharmacol., 140(1) 186 (2012).   DOI
23 R. D. Monds, P. D. Newell, R. H. Gross, and G. A. O'Toole, Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA, Mol. Microbiol., 63(3), 656 (2007).   DOI
24 M. Grillo-Puertas, J. M. Villegas, M. B. Rintoul, and V. A. Rapisarda, Polyphosphate degradation in stationary phase triggers biofilm formation via LuxS quorum sensing system in Escherichia coli, PLoS One, 7(11), e50368 (2012).   DOI
25 T. Simonart, M. Dramaix, and V. De Maertelaer, Efficacy of tetracyclines in the treatment of acne vulgaris: a review, Br. J. Dermatol., 158(2), 208 (2008).   DOI
26 R. Ghosh, S. Barman, and N. C. Mandal, Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate, Sci. Rep., 9, 5477 (2019).   DOI
27 A. Ahuja, A. Potanin, and Y. M. Joshi, Two step yielding in soft materials, Adv. Colloid. Interface. Sci., 282, 102179 (2020).   DOI
28 H. C. Flemming and J. Wingender, The biofilm matrix. Nat. Rev. Microbiol., 8, 623 (2010).   DOI
29 C. Guilhen, C. Forestier, and D. Balestrino, Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties, Mol. Microbiol., 105(2), 188 (2017).   DOI
30 T. Iwase, Y. Uehara, H. Shinji, A. Tajima, H. Seo, K. Takada, T. Agata, and Y. Mizunoe, Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization, Nature, 465, 346 (2010).   DOI