Browse > Article
http://dx.doi.org/10.5806/AST.2018.31.4.149

Study on the determination methods of the natural radionuclides (238U, 232Th) in building materials and processed living products  

Lee, Hyeon-Woo (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Lee, Hoon (Radiation Safety Division, Korea Foundation of Nuclear Safety)
Park, Ji-Young (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Jang, Mee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
Lee, Jin-Hong (Department of Environmental Engineering, Chung-Nam National University)
Publication Information
Analytical Science and Technology / v.31, no.4, 2018 , pp. 149-160 More about this Journal
Abstract
A large number of functional living products are being produced for eco-friendly or health-promoting purposes. In the manufacturing process, such products could be adulterated with raw materials with high radioactivity, such as monazite and tourmaline. Thus, it is essential to manage raw materials and products closely related to the public living. For proper management, an accurate radioactivity data of the processed products are needed. Therefore, it is essential to develop a rapid and validated analytical method. In this study, the concentration of the radioactive $^{238}U$ and $^{232}Th$ in building materials (e.g., tile, cement, paint, wall paper, and gypsum board) and living products (e.g., health products, textiles, and minerals) were determined and compared by ED-XRF and ICP-MS. By comparing the results of both methods, we confirmed the applicability of the rapid screening and precise analysis of ED-XRF and ICP-MS. In addition, $^{238}U$ and $^{232}Th$ levels were relatively lower in building materials than in living products. Particularly, $^{232}Th$ content in 6 of 47 living products exceeded (maximum $8.2Bq{\cdot}g^{-1}$) the standard limit of $^{232}Th$ content in raw material ($1.0Bq{\cdot}g^{-1}$).
Keywords
uranium; thorium; ED-XRF; ICP-MS; building materials; living product;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. S. Paschoa, Appl. Radiat. Isot., 49, 189-196 (1998).   DOI
2 M. Mola, M. Palomo, A. Penalvear, C. Aguilar, and F. Borrull, J. Hazard. Mater., 198, 57-64 (2011).   DOI
3 International Commission on Radiological Protection, 'The 2007 Recommendations of the International Commission on Radiological Protection', ICRP Publication 103, 2007.
4 International Atomic Energy Agency, 'Extent of Environmental Contamination by naturally occurring radioactive material (NORM) and technological options for mitigation', Tech report 419, 2003.
5 F. S. Al-Saleh and G. A. Al-Harshan, J. Environ. Radioact., 99, 1026-1031 (2008).   DOI
6 Y. Y. Ji, K. H. Chung, J. M. Lim, C. J. Kim, M. Jang, M. J. Kang, and S. T. Park, Appl. Radiat. Isot., 97, 1-7 (2015).   DOI
7 A. Papadopoulos, G. Christofides, A. Koroneos, S. Stoulos, and C. Pa-pastefanou, Appl. Radiat. Isot., 75, 95-104 (2013).   DOI
8 H. Tuovinen, D. Vesterbacka, E. Pohjolainen, D. Read, D. Solatie, and J. Lehto, J. Geochem. Explora., 148, 174-180 (2015).   DOI
9 J. L. Mas, M. Villa, H. Hurtado, and R. Garcia-Tenorio, J. Hazard. Mater., 205-206, 198-207 (2012).   DOI
10 Y. S. Kim, J. Kor. Soc. Cloth. Ind., 12(2), 240-245 (2010).   DOI
11 United States Nuclear Regulatory Commission, http://public-blog.nrc-gateway.gov/2014/07/28/negative-iontechnology-what-you-should-know, Assessed 28 July 2014.
12 Nuclear Safty and Security Commission, No. 14115 (2017.03.30.), Republic of Korea.
13 Korea Foundation Of Nuclear Safety, 'Anion-Radioactivity Correlation Analysis Result', 2017.
14 Ministry of Education, Culture, Sports, Science and Technology (MEXT), 'Guideline for Ensuring Safty of Raw Materials and Products Containing Uranium or Thorium', 2009.
15 European Commission, Radiation protection 112, 'Radiological Protection Principles concerning the Natural Radioactivity of Building Materials', 1999.
16 J. Niu, P. E. Rasmussen, A. Wheeler, R. Williams, and M. Chenier, J. Atmos. Environ., 44, 1026-1031 (2010).
17 J. Y. Park, J. M. Lim, Y. Y. Ji, C. S. Lim, B. U. Jang, K. H. Chung, W. N. Lee, and M. J. Kang, J. Radiat. Prot. Res., 41(4), 359-367 (2017).   DOI
18 T. Trojek and T. Cechak, Radiat. Prot. Dosimetry., 164, 529-532 (2015).   DOI
19 I. Croudace, P. Warwick, R. Taylor, and S. Dee, Anal. Chim. Acta., 371, 217-225 (1998).   DOI
20 J. K. Haken, Ind. Eng. Chem. Prod. Res., 25, 163-171 (1986).   DOI
21 H. E. Carter, P. Warwick, J. Cobbb, and G. Longworth, Analyst., 124, 271-274 (1999).   DOI
22 N. M. Hassan, T. Ishikawa, M. Hosoda, A. Sorimachi, S. Tokonami, Ma. Fukushi, and S. K. Sahoo, J. Radioanal. Nucl. Chem., 283, 15-21 (2009).
23 J. M. Lim, H. Lee, C. J. Kim, M. Jang, J. Y. Park, and K. H. Chung, J. Anal. Sci. Technol., 30(5), 252-261 (2017).
24 C. J. Brookes, I. G. Betteley, and S. M. Loxton, 'Fundamentals of Mathematics and Statistics, Wiley, 1979.
25 M. Seferinoglu, A. Dirican, P. E. Erden, and D. Ericin, Appl. Radiat. Isot., 94, 355-362 (2014).   DOI
26 N. Ibrahim, J. Environ. Radioact., 43, 255-258 (1999).   DOI
27 J. Mantero, M. Lehritane, S. Hurtado, and R. Garcia-Tenorio, J. Radioanal. Nucl. Chem., 286, 557-563 (2010).   DOI
28 J. L. Todoli and J. M. Mermet, 'Liquid Sample Introduction in ICP Spectrometry A Practical Guide', 1st Ed., Elsevier, 2008.
29 W. Schroeyers, Z. Sas, G. Bator, R. Trevisi, C. Nuccetelli, F. Leonardi, S. Schreurs, and T. Kovacs, J. Construc. Build. Materials., 159, 755-767 (2018).   DOI
30 Y. H. Cho, C. J. Kim, J. Y. Yun, D. H. Cho, and K. P. Kim, J. Radiat. Prot., 3, 181-190 (2012).
31 M. Lust and E. Realo, Proceedings. Estonian. Academy. Sci., 61(2), 107-112 (2012).   DOI