• Title/Summary/Keyword: Earthwork Equipment

Search Result 54, Processing Time 0.025 seconds

Factors Affecting Selection & Combination of Earthwork Equipments (토공장비 선정 및 조합을 위한 영향요인 연구)

  • Choi, Jae-Hwi;Lee, Dong-Hoon;Kim, Sun-Hyung;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.201-205
    • /
    • 2010
  • Earthwork is an essential initial work discipline in construction projects and open to significant impacts of several factors such as weather, site conditions, soil conditions, underground installations and available construction machinery, calling for careful planning by managers. However, selection and combination of construction machinery and equipment for earthwork still depends on experience or intuition of managers in construction sites, with much room left for proper management in terms of cost, schedule and environmental load control. This research aims to analyze the performance of earthwork equipment and establish relations among various factors affecting a model for optimizing selection and combination of earthwork equipment as a precursor to the development of such model. We expect the conclusions herein to contribute to optimizing selection and combination of earthwork equipment and provide basic inputs for the development of applicable model that can save costs, reduce schedule and mitigate environmental load.

  • PDF

Developing a 3D BIM for Earthwork Construction

  • Moon, Sungwoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.245-247
    • /
    • 2015
  • The Building Information Model (BIM) is gaining wide popularity in the construction industry. This attempt is, however, limited to a predefined operation of structural facilities. The application of BIM can be extended to include undefined operations in earthwork construction. The objective of this paper is to introduce the concept of an earthwork BIM environment that is currently under development in the Construction System Laboratory at Pusan National University. First, this paper defines the concept of earthwork BIM. Second, it discusses the key aspects of earthwork BIM, including 1) geographical information, 2) equipment configuration, and 3) equipment position. In the future, the 3D BIM environment will be tested at an actual construction site to determine its applicability, and it will be extended to include construction equipment such as bull dozers and pay loaders.

  • PDF

Attributes for Developing a Database for Construction Information Interface

  • Moon, Sungwoo;Cho, Kyeongsu
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.673-673
    • /
    • 2015
  • Earthwork is an operation that provides space for structures, and it takes up a large portion of the construction costs in a construction project. In large-scale earthwork, numerous types of construction equipment are used in the operation. The types of equipment should be selected based on the field conditions and the construction methods. These construction vehicles are constantly changing positions during the earthwork operation. Therefore, the equipment operators require effective communication to ensure the efficiency of the earthwork operation. All equipment operators should exchange information with the other equipment operators. Information should be exchanged continuously to support decision making and increase productivity during the earthwork operation at the construction site. This paper investigates the attributes required for an information interface between construction vehicles during an earthwork operation. This paper 1) discusses the importance of an information interface for construction vehicles in order to increase productivity during an earthwork operation, 2) analyses the types of attributes that need to be communicated between construction vehicles, and 3) provides a database that has been built for attribute control. The database built for the information interface between construction vehicles will enhance communication between vehicle operators. Table I shows the typical attributes that should be shared between the excavator operator and the dump truck operator. This information needs to be shared among the operators, as it helps them to plan the earthwork operation in a more efficient manner. A database has been developed to store this information in an entity relation diagram. A user-interface display environment is also developed to provide this information to the operators in the construction vehicles. The proposed interface can help exchange information effectively and facilitate a common understanding during the earthwork operation. For example, the vehicle operators will be aware of the planned volume, excavated volume, transportation time, and transportation numbers. As a part of this study, mobile devices, such as mobile phones and google glasses, will be used as hands-on communication tools.

  • PDF

Attribute Data Management for Developing the Database of a 3D Earthwork BIM System (3D 토공 BIM 시스템 데이터베이스 구축을 위한 속성 데이터 관리)

  • Moon, Sungwoo;Seo, Jongwon
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A Building Information Model (BIM) is an attempt to simulate the process of building structures in a three-dimensional (3D) digital space. While the technology is usually applied to structured buildings, bridges, and underground facilities, it is rarely applied to an unstructured environment of earthwork operations. If a BIM is used for earthworks, the 3D simulation can be used for construction equipment guidance and earthwork management. This paper presents a real-time, 3D earthwork BIM that provides a 3D graphical simulation of excavators in conjunction with geographic modeling. Developing a real-time, 3D earthwork BIM requires handling a variety of factors, such as geographical information and vehicular movement. This paper mainly focuses on the management of these attributes and provides a database design for storing and retrieving data. In an example application, a prototype of the 3D earthwork BIM is presented to understand what it would provide when used during earthwork operations at a construction site.

Information Modeling for Construction Equipment Interface in Earthwork (토공작업 건설장비 정보 인터페이스를 위한 정보 모델링)

  • Moon, Sungwoo;Cho, Kyeongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.699-706
    • /
    • 2015
  • Earthwork is executed to provide a space for facility structures, and plays an important role in the construction operation. Contractors usually put a combination of construction vehicles to execute the earthwork operation. These construction vehicles need to interface with each other for productivity improvement. The objective of this study is to prototype an earthwork supportive system for information interface between construction vehicles. The study is conducted in a sequence of 1) analysis of information interface during earthwork; 2) data modeling of earthwork attributes; and 3) development of a prototype for the earthwork supportive system. The output screen images of the prototype show that the earthwork supportive system can improve communication between construction vehicles by facilitating information interface during earthwork.

Development of Determination System for Optimal Combination of Earthwork Equipments (토공사를 위한 건설장비 투입 최적 조합 산정 시스템 개발)

  • Park, Jae-Woo;Yeom, Dong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.957-969
    • /
    • 2020
  • The primary objective of this study is to develop a determination system for an optimal combination of earthwork equipment that improves the traditional way in convenience, prediction accuracy, and productivity. For this, the following research works are conducted sequentially; 1)literature review, 2)technology development trend analysis, 3)develop a determination system for the optimal combination of earthwork equipment, 4)simulation of a developed system. As a result, core considerations are deducted for the development of a determination system. Furthermore, site simulation is performed using a developed system. Site simulation result, Cluster 1(R1200LC 7㎥, CAT 775G 65ton×2) was selected from 6 clusters because of its production cost (₩491/㎥). It is expected that the application range and impact on the construction industry will be enormous due to the availability of the developed system.

Performance Effectiveness Case Study of the Machine Guidance System for Dozer Eartwrok Grading Work (도저 정지작업 시 머신 가이던스 시스템 적용에 따른 토공성과 향상 사례분석)

  • Moon, Sungwoo;Kim, Sangtae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.1
    • /
    • pp.78-86
    • /
    • 2020
  • Dozer is an expensive construction equipment and has a significant performance impact on earthwork performance. A machine guidance system has been applied to dozer equipment as a solution that can improve the performance. The system can provide earthwork-related information to equipment operators so that earthworks can be carried out with minimum support from surveyors. Construction Equipment Machine guidance has the function of supporting earthwork according to an earthwork plan by providing excavation-related information to machine operators. The objective of this study is to evaluate the performance improvement of a machine guidance system for an dozer earthwork operation, and to compare the machine guidance method with the traditional method. The performance has been evaluated in two folds: 1) productivity and 2) accuracy. The productivity shows the quantity of earthwork for a given unit time. The accuracy shows the deviation of grading level from the designed level on the construction drawing for earthwork. The machine guidance system has been applied to a testing bed in a construction site. Data comparison analysis showed that the earth earthwork had 46.59% improvement in productivity as well as 46.96% improvement in accuracy, and is expected to provide a tool for applying smart constrction to the earthwork operation.

Case Study of Smart Phone GPS Sensor-based Earthwork Monitoring and Simulation (스마트폰 GPS 센서 기반의 토공 공정 모니터링 및 시뮬레이션 활용 사례연구)

  • Jo, Hyeon-Seok;Yun, Chung-Bae;Park, Ji-Hyeon;Han, Sang Uk
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • Earthmoving operations account for approximately 25% of construction cost, generally executed prior to the construction of buildings and structures with heavy equipment. For the successful completion of earthwork projects, it is crucial to constantly monitor earthwork equipment (e.g., trucks), estimate productivity, and optimize the construction process and equipment on a construction site. Traditional methods however require time-consuming and painstaking tasks for the manual observations of the ongoing field operations. This study proposed the use of a GPS sensor embedded in a smartphone for the tracking and visualization of equipment locations, which are in turn used for the estimation and simulation of cycle times and production rates of ongoing earthwork. This approach is implemented into a digital platform enabling real-time data collection and simulation, particularly in a 2D (e.g., maps) or 3D (e.g., point clouds) virtual environment where the spatial and temporal flows of trucks are visualized. In the case study, the digital platform is applied for an earthmoving operation at the site development work of commercial factories. The results demonstrate that the production rates of various equipment usage scenarios (e.g., the different numbers of trucks) can be estimated through simulation, and then, the optimal number of tucks for the equipment fleet can be determined, thus supporting the practical potential of real-time sensing and simulation for onsite equipment management.

Utilization of a Smart Glass for Improving Data Interface During the Earthwork Operation (토공작업의 데이터 교환 개선을 위한 스마트 글래스 활용)

  • Moon, Sungwoo;Moon, Changgon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.167-174
    • /
    • 2017
  • Earthwork is to level or excavate the ground to provide a space for installing structures. A large number of construction equipment such as excavators, dozers, and dump trucks are put into the earthwork operation. The equipment operators need to constantly communicate with each other during the operation. In the earthwork operation, therefore, the process should be analyzed on the equipment operation to improve the effectiveness of communication. The objective of this study is to understand the earthwork process, and improve the effectiveness of data interface by adopting the smart glass technology. In the study, the general process of earthwork is modeled using a process diagram. The data that is generated during the process is modeled using a class diagram. A database is developed to store and reuse the data. The smart glass technology is adopted to develop a data interface during the earthwork operation. The result of the prototype showed that the technology can improve the data interface during excavation overcoming the shortcomings of hand or sound signals.

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.