• Title/Summary/Keyword: Earth-volume

Search Result 388, Processing Time 0.028 seconds

Gravity Survey Around the Palgongsan Granitic Body and Its Vicinity (팔공산화강암체와 그 인근지역에서의 중력탐사 연구)

  • Hwang, Jong-Sun;Min, Kyung-Duck;Choi, Chul;Yu, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.305-312
    • /
    • 2003
  • This study was performed to delineate the subsurface geology, geologic structure, and distribution pattern of the Palgongsan granitic body, and to reveal the relationship between the Kyeongsang basin and Yongnam massif by gravity survey. The study area is located between the latitude of 35$^{\circ}$45'-36$^{\circ}$21'N and longitude of 128$^{\circ}$15'-129$^{\circ}$00'E. Total of 966 gravity data measured by Seoul National University, KlGAM(Korea Institute of Geology, Mining & Materials), Pusan National University and Yonsei University were used. The Bouguer gravity anomaly in the study area ranges from -12.88 to 26.01 mgal with a mean value of 11.27 mgal. A very low anomaly zone is located in the Yongnam massif in west of the study area. The anomaly value increases going from west to east. A low anomaly distribution in Palgongsan granite and Yongnam massif is interpreted as the effect of their lower density than that of Kyeongsang Super Group. Power spectrum analysis is applied to evaluate the average depth of basement the Kyeongsang Basin and Conrad discontinuity from gravity anomaly. The average depths of density discontinuities are calculated 10.45 km and 4.9 km, and these are interpreted as Conrad discontinuity and depth of basement of the Kyeongsang Basin, respectively. The depth of Palgongsan granite is derived by means of 2-dimensional modeling and it decreases gradually toward the east. The gravity anomaly east of the study area decreases abruptly due to Shingryeong fault and Nogosan ring fault. Two deepest and sharp roots of Palgongsan granite are recognized by 2-dimensional modeling of each profiles. The depths of those roots are 5.3 km on a profile AA' and 7 km on a profile BB' which is the maximum depth of Palgongsan granite. Small granitic bodies are also seen to be intruded around the Palgongsan granite. The root of Palgongsan granite is shown by 3-dimensional analysis based on the interpolation of 2-dimensional modeling along each profiles to exist in the southwest vicinity of Palgongsan granite. The total volume of Palgongsan granite is approximately 31.211 $Km^3$.

The Air-stripping Process Conjugated with the Ultrasonic Treatment to Remove TOC in Groundwater around the LPG Underground Storage Cavern (탈기법과 초음파 처리법을 연계한 LPG 지하공동저장소 주변 오염지하수 내 TOC 제거)

  • Han, Yikyeong;Jun, Seongchun;Kim, Danu;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.511-519
    • /
    • 2022
  • In order to develop an air-stripping based remediation process to remove the TOC (Total Organic Carbon) in groundwater around the underground LPG storage cavern, the laboratory scale experiments at various conditions (change of air injection volume and temperature, the application of ultrasonic treatment, etc.) for two types of groundwater (initial TOC concentration of 608 mg/L and 153 mg/L, respectively). From results of experiment, as the air injection rate for stripping into groundwater increased from 2 L/min to 11 L/min and as the air-stripping time increased from 1 hour to 24 hour, the TOC removal efficiency of air-stripping increased. However, the TOC concentration of treated groundwater was higher than the discharge tolerance limit (100 mg/L) even after 24 hour stripping at the maximum air injection rate of 11 L/min. The main compounds of the TOC in groundwater were identified as methanol and propane and the long stripping time (more than 24 hour) was needed to separate the methanol from groundwater because of the affinity between water and methanol. At 20℃ and 4 L/min of air injection, the TOC removal efficiency increased to 59.1% after 24 hour air-stripping. When the temperature of groundwater increased to 30℃ and 40℃, the TOC removal efficiency increased up to 80.0% and 82.8%, suggesting that more than 24 hour air-stripping at 40℃ is needed to lower the TOC concentration to below 100 mg/L and the additional TOC removal process as well as the air-stripping is necessary. When the temperature increased to 60℃ and the ultrasonic treatment was conjugated with the air-stripping, the TOC removal efficiency increased to 87.8% within 5 hour stripping and the final TOC concentration (72.4 mg/L) was satisfied with the TOC discharge tolerance limit. The TOC removal efficiency for groundwater having low TOC concentration (153 mg/L) also showed similar removal efficiency of 89.7% (the final TOC concentration: 18.9 mg/L). Results in this study supported that the air-stripping conjugated with the ultrasonic treatment could remove successfully the TOC in groundwater around the underground LPG strorage cavern.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.

Study on the Application for Hydrogen Storage Tank of MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) Alloys Containing Excess Zr (과잉 Zr을 첨가한 MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) 합금의 수소용기 적용에 관한 연구)

  • Kang, Kil-Ku;Park, Sung-Gap;Kang, Sei-Sun;Kwon, Ho-Young
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.624-633
    • /
    • 2002
  • In order to improve the hydrogen storage capacity and the activation properties of the hydrogen storage alloys, the rare-earth metal alloy series, MmN $i_{4.5}$M $n_{0.5}$Z $r_{x}$(x=0, 0.025, 0.05, 0.1), are prepared by adding excess Zr in MmN $i_{4.5}$M $n_{0.5}$ alloy. The various parts in hydrogen storage vessel consisted of copper pipes reached the setting temperature within 4~5 minutes after heat addition, which indicated that storage vessel had a good heat conductivity required in application. The performance test on storage vessel filled with rare-earth metal alloys of 1000 gr was also conducted after hydrogen charging for 10 min at $18^{\circ}C$ under 10 atm. It showed that the average capacity of discharged hydrogen volume was found to be for $MmNi_{4.5}$ $Mn_{0.5}$ and $MmNi_{4.5}$ $Mn_{x}$ 0.5/$Zr_{samples}$ indicated that the released amount of hydrogen for this $AB_{5}$ type alloys was more than 92 % of theoretic value, and also it was found that the optimum discharging temperature for obtaining an appropriate pressure of 3 atm was determined to be $V^{\circ}C$ for $MmNi_{4.5}$ $Mn_{0.5}$$Zr_{x}$(x=0, 0.025, 0.05, 0.1) hydrogen storage alloys. The released amount of these hydrogen storage samples was 125 $\ell$ , 122.4 $\ell$ and 108.15 $\ell$/kg for $MmNi_{4.5}$ $Mn_{0.5}$ $Zr_{0.025}$ $MmNi_{4.5}$M $n_{0.5}$Z $r_{0.05}$, and MmN $i_{4.5}$ Mn_0.5$Zr_{0}$, at $70^{\circ}C$ respectively. Amount of the 2nd phases increase with increase on Zr contents in $MmNi_{4.5}$$Mn_{0.5}$ $Zr_{ 0.1}$/ alloy. This phenomenon indicates that$ ZrNi_3$ in $MmNi_{4.5}$ $Mn_{0.5}$ $Zr_{x}$ / phase, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage. As the Zr contents increase, the activation time and the plateau pressure decreases and sloping of the plateau pressure increases.creases.eases.s.

Development and Uncertainty Assessment of Interface Friction Prediction Equation Between Steel Surface and Cohesionless Soils (강재면과 사질토 사이의 경계면 마찰각 예측식 개발 및 불확실성 평가)

  • Lee, Kicheol;Kim, So-Yeun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • Characteristics of interface friction between cohesionless soils and geotechnical structure surfaces play an important role in the analysis of earth load and resistance on the structure. In general, geotechnical structures are mainly composed of either steel or concrete, and their surface roughnesses with respect to soil particle sizes influence the interface characteristics between soils and the structures. Accurate assessment of the interface friction characteristics between soils and structures is important to ensure the safety of geotechnical structures, such as mechanically stabilized earth walls reinforced with inextensible reinforcements, piles embedded into soils, retaining wall backfilled with soils. In this study, based on the database of high quality interface friction tests between frictional soils and solid surfaces from literature, equation representing peak interface friction angle is proposed. The influential factors of the peak interface friction angle are relative roughness between soil and solid surface, relative density of frictional soil, and residual (constant volume) interface friction angle. Futhermore, for the developed equation of the interface friction angle, its uncertainty was assessed statistically based on Goodness-of-fit test results.

Study on the Local Weather Characteristics using Observation Data at the Boseong Tall Tower (보성 종합기상탑 자료를 활용한 국지기상 특성 연구)

  • Hwang, Sung Eun;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.459-468
    • /
    • 2020
  • In this study, the selection criteria for the occurrence of sea breezes in the Boseong area during the spring season (March-May) of 2016-2017 were prepared for the analysis of vertical weather characteristics. For this purpose, wind speed values were determined using the measured precipitation, cloud volume, wind direction, the difference between the ground and sea temperature, a wind Profiler at an altitude of 1 km, and numerical model data. The dates of the sea breezes in Boseong were classified according to the selection criteria, and the spatial and temporal characteristics of the sea breezes were identified by analyzing the time and altitude of the sea breeze and the size of the wind speed. Sea breezes occurred 23 out of 183 days (12%), and in Boseong, at least 1.2 out of 10 spring days exhibited sea breezes. Sea winds ranged from 1200 to 1800 LST, mainly from ground to 700 m altitude during the day. In addition, the maximum wind speed averaged 4.9 m s-1, at an altitude of 40 m at 1600 LST, showing relatively lower values than those in a preceding study. This seems to be owing to the reduction in wind speed due to the complexity of the coastal terrain.

Application of Seasonal AERI Reference Spectrum for the Improvement of Cloud data Filtering Method (계절별 AERI 기준 스펙트럼 적용을 통한 구름에 영향을 받은 스펙트럼 자료 제거방법 개선)

  • Cho, Joon-Sik;Goo, Tae-Young;Shin, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.409-419
    • /
    • 2015
  • The Atmospheric Emitted Radiance Interferometer (AERI) which is the Fourier Transform InfraRed (FTIR) spectrometer has been operated by the National Institute of Meteorological Research (NIMR) in Anmyeon island, South Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of Cloud data Filtering Method (CFM) which employed only one reference spectrum of clear sky in winter season. This study suggests Seasonal-Cloud data Filtering Method (S-CFM) which applied seasonal AERI reference spectra. For the comparison of applied S-CFM and CFM, the methane retrievals (surface volume mixing ratio) from AERI spectra are used. The quality of AERI methane retrieval applied S-CFM was significantly more improved than that of CFM. The positive result of S-CFM is similar pattern with the seasonal variation of methane from ground-based in-situ measurement, even if the summer season's methane is retrieved over-estimation. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result except for the summer season.

The Behaviour of Dust Concentrations During Sand Storm in Seoul Area (황사기간 중 PM2.5, PM10, TSP 농도 특성에 관한 연구)

  • Kim, Min-Young;Kim, Kwang-Rae;Lee, Min-Hwan;Cho, Seog-Ju
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • The characteristics of particles were evaluated through the measurement data of PM$_{2.5}$, PM$_{10}$ and TSP instruments located in air quality monitoring stations installed and operated by Seoul Metropolitan city. The data of particulate mass on the filter was collected bv a high volume air sampler during the sand storm period. The number of days of sand storm in Seoul showed a different pattern from 1990 to November 2002, We can see a trend of increased occurrence and duration of sand storms. The ratio of PM$_{10}$ to TSP was shown as 52.9% and 59.4% during the sand storm period in 2000 and 2001. respectively. It was indicated that the particles larger than 10${\mu}$m increased by approximately 10% in sand storm periods compared to no sand storm period. While PM$_{10}$ size fraction reached 71.4% in 2002, the contribution of sand storm to total particulate concentration was estimated to be 11.9% for PM$_{2.5}$, 23.1% for PM$_{10}$, 19% for TSP in 2002, respectively and sand storms highly correlated with annual total particulate concentration.

Optical Properties of Aerosol at Gongju Estimated by Ground-based Measurements Using Sky-radiometer (스카이라디오미터(Sky-radiometer)로 관측된 공주지역 에어로솔의 광학적 특성)

  • Kwak, Chong-Heum;Suh, Myoung-Seok;Kim, Maeng-Ki;Kwak, Seo-Youn;Lee, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.790-799
    • /
    • 2005
  • We investigate the optical properties of aerosols over Gongju by an indirect method using the pound measurement, Sky-radiometer. The analysis period is from January to December, 2004. Skyrad. pack.3 is used to estimate the optical properties, such as the aerosol optical thickness (AOT), single scattering albedo (SSA), ${\AA}ngstron$ exponent $({\alpha})$ and size distribution, of aerosols from the ground measured radiance data. And qualify control is applied to minimize the cloud-contaminated data and improve the quality of analysis results. The 12-month average of AOT, ${\alpha}$, and SSA are 0.46, 1.14, and 0.91, respectively. The average volume spectra of aerosols shows a bi-modal distribution, the first peak at fine mode and the second peak at coarse mode. AOT and coarse particles clearly increases while SSA decreases during the Asian dust events. The optical properties of aerosols at Gongju vary with?seasons, but those are not influenced by the wind direction.