Browse > Article
http://dx.doi.org/10.7780/kjrs.2015.31.5.5

Application of Seasonal AERI Reference Spectrum for the Improvement of Cloud data Filtering Method  

Cho, Joon-Sik (Earth and Environment System Laboratory, National Institute of Meteorological Research)
Goo, Tae-Young (Earth and Environment System Laboratory, National Institute of Meteorological Research)
Shin, Jinho (National Meteorological Satellite Center, Korea Meteorological Administration)
Publication Information
Korean Journal of Remote Sensing / v.31, no.5, 2015 , pp. 409-419 More about this Journal
Abstract
The Atmospheric Emitted Radiance Interferometer (AERI) which is the Fourier Transform InfraRed (FTIR) spectrometer has been operated by the National Institute of Meteorological Research (NIMR) in Anmyeon island, South Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of Cloud data Filtering Method (CFM) which employed only one reference spectrum of clear sky in winter season. This study suggests Seasonal-Cloud data Filtering Method (S-CFM) which applied seasonal AERI reference spectra. For the comparison of applied S-CFM and CFM, the methane retrievals (surface volume mixing ratio) from AERI spectra are used. The quality of AERI methane retrieval applied S-CFM was significantly more improved than that of CFM. The positive result of S-CFM is similar pattern with the seasonal variation of methane from ground-based in-situ measurement, even if the summer season's methane is retrieved over-estimation. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result except for the summer season.
Keywords
AERI; Cloud Filtering; FTIR; Infrared; Remote sensing; Satellite; GOSAT; Methane retrieval;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 KMA Global Atmosphere Watch Center, 2012. Report of Global Atmosphere Watch.
2 Briz, S., A.J. de Castro, S. Diez, F. Lopez, and K. Schafer, 2007. Remote sensing by open-path FTIR spectroscopy. Comparison of different analysis techniques applied to ozone and carbon monoxide detection, JQSRT, 103: 314-330.   DOI
3 Cho, J.S., T.Y. Goo, and J.H. Shin, 2015. Improvement of Cloud-data Filtering Method Using Spectrum of AERI, Korean Jour. Remo. Sens., 31: 137-148 (In Korean with English abstract).   DOI
4 Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the intergovernmental panel on Climate Change. IPCC, Geneva, Switzerland, p. 151.
5 Feltz, W.F., W.L. Smith, R.O. Knuteson, H.E. Revercomb, H.M. Woolf, and, H.B. Howell, 1998. Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteor., 37: 857-875.   DOI
6 Feltz, W.F., W.L. Smith, H.B. Howell, R.O. Knuteson, H. Woolf, and H.E. Revercomb, 2003. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI), Journal of Applied Meteorology, 42: 584-597.   DOI
7 He, H., W.W. McMillan, R.O. Knuteson, and W.F. Feltz, 2001. Tropospheric carbon monoxide column density retrieval during the Pre-launch MOPITT Validation Exercise, Atmos. Environ., 35: 509-514.   DOI
8 Kang, S.H., T.Y. Goo, and M.L. Ou, 2013. Improvement of AERI T/q Retrievals and Their Validation at Anmyeon-Do, South Korea, J. Atmos. Oceanic Technol., 30: 1433-1446.   DOI
9 Knuteson, R.O., F.A. Best, D.H. DeSlover, B.J. Osborn, H.E. Revercomb, and W.L. Smither Sr., 2004a. Infrared land surface remote sensing using high spectral resolution aircraft observations, Adv. Space Res., 22: 1114-1119.
10 Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C. Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Ellington, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith, J.F. Short, and D.C. Tobin, 2004b. Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design, J. Atmos. Oceanic Technol., 21: 1763-1776.   DOI
11 Mariani, Z., K. Strong, M. Wolff, P. Rowe, V. Walden, P.F. Fogal, T. Duck, G. Lesins, D.S. Turner, C. Cox, E. Eloranta, J.R. Drummond, C. Roy, D.D. Turner, D. Hudak, and I.A. Lindenmaier, 2012. Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers, Atmos. Meas. Tech., 5: 329-344.   DOI
12 Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C. Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Ellington, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith, J.F. Short, and D.C. Tobin, 2004c. Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance, J. Atmos. Oceanic Technol., 21: 1777-1789.   DOI
13 Kuze, A., T. Urabe, H. Suto, Y. Kaneko, and T. Hamazaki, 2006. The instrumentation and the BBM test results of thermal and near-infrared sensor for carbon observation (TANSO) on GOSAT, Proc. of Soc. Photo Opt. Instrum. Eng., 6297: 62970K.
14 Mariani, Z., K. Strong, M. Palm, R. Lindenmaier, C. Adams, X. Zhao, V. Savastiouk, C.T. McElroy, F. Goutail, and J.R. Drummond, 2013. Yearround retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer, Atmos. Meas. Tech., 6: 1549-1565.   DOI
15 Minnett, P.J., R.O. Knuteson, F.A. Best, B.J. Osborne, J.A. Hanafin, and O.B. Brown, 2001. The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared spectroradiometer, J. Atmos. Oceanic Technol., 18: 994-1013.   DOI
16 Pan, L., J.C. Gille, D.P. Edwards, P.L. Bailey, and C.D. Rodgers, 1998. Retrieval of tropospheric carbon monoxide for the MOPITT experiment, J. Geophys. Res., 103: 32277-32290.   DOI
17 Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang, 2003. Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA, J. Appl. Meteor., 42: 701-715.   DOI
18 Rinsland, C.P., N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, 1998. Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103: 28197-28218.   DOI
19 Smith, W.L., W.F. Feltz, R.O. Knuteson, H.E. Revercomb, H.M. Woolf, and H.B. Howell, 1999. The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements. J. Atmos. Oceanic Technol., 16: 323-33.   DOI
20 Sokolik, I.N., O.B. Toon, and R.W. Bergstrom, 1998. Modeling the radiative characteristics of mineral aerosols at infrared wavelengths, J. Geophys. Res., 103: 8813-8826.   DOI
21 Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, 2009. Global Concentrations of $CO_2$ and $CH_4$ Retrieved from GOSAT: First Preliminary Results, SOLA, 5: 160-163.   DOI
22 Yoshida, Y., Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, 2011. Retrieval algorithm for and column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4: 717-734.   DOI