DOI QR코드

DOI QR Code

Application of Seasonal AERI Reference Spectrum for the Improvement of Cloud data Filtering Method

계절별 AERI 기준 스펙트럼 적용을 통한 구름에 영향을 받은 스펙트럼 자료 제거방법 개선

  • Cho, Joon-Sik (Earth and Environment System Laboratory, National Institute of Meteorological Research) ;
  • Goo, Tae-Young (Earth and Environment System Laboratory, National Institute of Meteorological Research) ;
  • Shin, Jinho (National Meteorological Satellite Center, Korea Meteorological Administration)
  • 조준식 (국립기상과학원 지구환경시스템연구과) ;
  • 구태영 (국립기상과학원 지구환경시스템연구과) ;
  • 신진호 (기상청 국가기상위성센터)
  • Received : 2015.07.23
  • Accepted : 2015.09.22
  • Published : 2015.10.31

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) which is the Fourier Transform InfraRed (FTIR) spectrometer has been operated by the National Institute of Meteorological Research (NIMR) in Anmyeon island, South Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of Cloud data Filtering Method (CFM) which employed only one reference spectrum of clear sky in winter season. This study suggests Seasonal-Cloud data Filtering Method (S-CFM) which applied seasonal AERI reference spectra. For the comparison of applied S-CFM and CFM, the methane retrievals (surface volume mixing ratio) from AERI spectra are used. The quality of AERI methane retrieval applied S-CFM was significantly more improved than that of CFM. The positive result of S-CFM is similar pattern with the seasonal variation of methane from ground-based in-situ measurement, even if the summer season's methane is retrieved over-estimation. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result except for the summer season.

국립기상과학원은 2010년 6월부터, 하향적외스펙트럼을 관측하는 고분해적외분광간섭계(FT-IR)인 Atmospheric Emitted Radiance Interferometer(AERI)를 안면도 기후변화감시센터에 설치하여 운영하고 있다. 고분해 적외 센서를 이용한 AERI는 위성 기반의 원격탐사 자료를 검증하는데 유효하다. 본 연구에서는 계절별 AERI 기준 스펙트럼을 선정 및 적용(Seasonal-Cloud data Filtering Method, S-CFM)하여 구름에 영향을 받은 관측 스펙트럼 자료 제거방법을 개선하였다. S-CFM을 적용하여 산출된 최하층 메탄농도는 한 개의 기준 스펙트럼을 사용(Cloud data Filtering Method, CFM)하여 산출된 최하층 메탄농도 및 지상관측 메탄농도와 비교하였으며, AERI 연직 메탄 총량을 산출하여 GOSAT 메탄 연직 총량을 통해 검증 및 분석하였다. S-CFM 방법을 적용하여 산출된 최하층 메탄농도는 CFM의 최하층 메탄농도보다 더 정확도가 높은 것으로 나타났으며, 지상관측 메탄농도의 연간 변화 패턴과 비슷한 결과를 보였다. 또한 GOSAT과 AERI의 연직 메탄 총량 비교에서도 비슷한 농도 분포를 보였으며, 매년 증가하는 패턴을 보였다. 뿐만 아니라 S-CFM을 적용함으로써 비교 가능한 자료의 개수가 증가하였다. 다만 여름철 AERI 스펙트럼을 통해 산출된 최하층 메탄농도 및 연직 총량 농도가 상당히 과대추정 되는 모습을 보이고 있기 때문에 기술적 보완이 필요한 것으로 나타났다.

Keywords

References

  1. KMA Global Atmosphere Watch Center, 2012. Report of Global Atmosphere Watch.
  2. Briz, S., A.J. de Castro, S. Diez, F. Lopez, and K. Schafer, 2007. Remote sensing by open-path FTIR spectroscopy. Comparison of different analysis techniques applied to ozone and carbon monoxide detection, JQSRT, 103: 314-330. https://doi.org/10.1016/j.jqsrt.2006.02.058
  3. Cho, J.S., T.Y. Goo, and J.H. Shin, 2015. Improvement of Cloud-data Filtering Method Using Spectrum of AERI, Korean Jour. Remo. Sens., 31: 137-148 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.2.8
  4. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the intergovernmental panel on Climate Change. IPCC, Geneva, Switzerland, p. 151.
  5. Feltz, W.F., W.L. Smith, R.O. Knuteson, H.E. Revercomb, H.M. Woolf, and, H.B. Howell, 1998. Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteor., 37: 857-875. https://doi.org/10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2
  6. Feltz, W.F., W.L. Smith, H.B. Howell, R.O. Knuteson, H. Woolf, and H.E. Revercomb, 2003. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI), Journal of Applied Meteorology, 42: 584-597. https://doi.org/10.1175/1520-0450(2003)042<0584:NPOTMA>2.0.CO;2
  7. He, H., W.W. McMillan, R.O. Knuteson, and W.F. Feltz, 2001. Tropospheric carbon monoxide column density retrieval during the Pre-launch MOPITT Validation Exercise, Atmos. Environ., 35: 509-514. https://doi.org/10.1016/S1352-2310(00)00334-4
  8. Kang, S.H., T.Y. Goo, and M.L. Ou, 2013. Improvement of AERI T/q Retrievals and Their Validation at Anmyeon-Do, South Korea, J. Atmos. Oceanic Technol., 30: 1433-1446. https://doi.org/10.1175/JTECH-D-12-00029.1
  9. Knuteson, R.O., F.A. Best, D.H. DeSlover, B.J. Osborn, H.E. Revercomb, and W.L. Smither Sr., 2004a. Infrared land surface remote sensing using high spectral resolution aircraft observations, Adv. Space Res., 22: 1114-1119.
  10. Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C. Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Ellington, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith, J.F. Short, and D.C. Tobin, 2004b. Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design, J. Atmos. Oceanic Technol., 21: 1763-1776. https://doi.org/10.1175/JTECH-1662.1
  11. Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C. Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Ellington, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith, J.F. Short, and D.C. Tobin, 2004c. Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance, J. Atmos. Oceanic Technol., 21: 1777-1789. https://doi.org/10.1175/JTECH-1663.1
  12. Kuze, A., T. Urabe, H. Suto, Y. Kaneko, and T. Hamazaki, 2006. The instrumentation and the BBM test results of thermal and near-infrared sensor for carbon observation (TANSO) on GOSAT, Proc. of Soc. Photo Opt. Instrum. Eng., 6297: 62970K.
  13. Mariani, Z., K. Strong, M. Palm, R. Lindenmaier, C. Adams, X. Zhao, V. Savastiouk, C.T. McElroy, F. Goutail, and J.R. Drummond, 2013. Yearround retrievals of trace gases in the Arctic using the Extended-range Atmospheric Emitted Radiance Interferometer, Atmos. Meas. Tech., 6: 1549-1565. https://doi.org/10.5194/amt-6-1549-2013
  14. Mariani, Z., K. Strong, M. Wolff, P. Rowe, V. Walden, P.F. Fogal, T. Duck, G. Lesins, D.S. Turner, C. Cox, E. Eloranta, J.R. Drummond, C. Roy, D.D. Turner, D. Hudak, and I.A. Lindenmaier, 2012. Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers, Atmos. Meas. Tech., 5: 329-344. https://doi.org/10.5194/amt-5-329-2012
  15. Minnett, P.J., R.O. Knuteson, F.A. Best, B.J. Osborne, J.A. Hanafin, and O.B. Brown, 2001. The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared spectroradiometer, J. Atmos. Oceanic Technol., 18: 994-1013. https://doi.org/10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2
  16. Pan, L., J.C. Gille, D.P. Edwards, P.L. Bailey, and C.D. Rodgers, 1998. Retrieval of tropospheric carbon monoxide for the MOPITT experiment, J. Geophys. Res., 103: 32277-32290. https://doi.org/10.1029/98JD01828
  17. Rinsland, C.P., N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, 1998. Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103: 28197-28218. https://doi.org/10.1029/98JD02515
  18. Smith, W.L., W.F. Feltz, R.O. Knuteson, H.E. Revercomb, H.M. Woolf, and H.B. Howell, 1999. The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements. J. Atmos. Oceanic Technol., 16: 323-33. https://doi.org/10.1175/1520-0426(1999)016<0323:TROPBL>2.0.CO;2
  19. Sokolik, I.N., O.B. Toon, and R.W. Bergstrom, 1998. Modeling the radiative characteristics of mineral aerosols at infrared wavelengths, J. Geophys. Res., 103: 8813-8826. https://doi.org/10.1029/98JD00049
  20. Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang, 2003. Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA, J. Appl. Meteor., 42: 701-715. https://doi.org/10.1175/1520-0450(2003)042<0701:CPDUGA>2.0.CO;2
  21. Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, 2009. Global Concentrations of $CO_2$ and $CH_4$ Retrieved from GOSAT: First Preliminary Results, SOLA, 5: 160-163. https://doi.org/10.2151/sola.2009-041
  22. Yoshida, Y., Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, 2011. Retrieval algorithm for and column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4: 717-734. https://doi.org/10.5194/amt-4-717-2011