• Title/Summary/Keyword: EWMA Control

Search Result 129, Processing Time 0.02 seconds

Impact of Special Causes on First-Order System Feedback Process Adjustment (First-Order System 피드백 공정 조정에서 이상원인의 영향)

  • Jun, Sang-Pyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • A special cause producing temporary deviation in the underlying process can influence on process adjustment in First-Order System feedback control system. In this paper, the impact of special causes on the forecasts and the process adjustment that is based on the EWMA forecasts are derived for a first-order system. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to confirm the impact numerically.

Comparison of the Efficiencies of Variable Sampling Intervals Charts for Simultaneous Monitoring the means of multivariate Quality Variables

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • When the linear correlation of the quality variables are considerably high, multivariate control charts may be a more effective way than univariate charts which operate quality variables and process parameters individually. Performances and efficiencies of the multivariate control charts under multivariate normal process has been considered. Some numerical results are presented under small scale of the shifts in the process to see the improvement of the efficiency of EWMA chart and CUSUM chart, which use past quality information, comparing to Shewart chart, which do not use quality information. We can know that the decision of the optimum value of the smoothing constant in EWMA structure or the reference value in CUSUM structure are very important whether we adopt combine-accumulate technique or accumulate-combine technique under the given condition of process.

AN INTEGRATED PROCESS CONTROL PROCEDURE WITH REPEATED ADJUSTMENTS AND EWMA MONITORING UNDER AN IMA(1,1) DISTURBANCE WITH A STEP SHIFT

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.381-399
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC re-duces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This paper considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an IMA(1,1) model with a step shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied according to the predicted deviation from target. For detecting special causes the exponentially weighted moving average control chart is applied to the observed deviations. It was assumed that the adjustment under the presence of a special cause may increase the process variability or change the system gain. Reasonable choices of parameters for the IPC procedure are considered in the context of the mean squared deviation as well as the average run length.

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.

Selection of the economically optimal parameters in the EWMA control chart (지수가중이동평균관리도의 경제적 최적모수의 선정)

  • 박창순;원태연
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.1
    • /
    • pp.91-109
    • /
    • 1996
  • Exponentially weighted moving averae(EWMA) control chart has been used widely for process monitoring and process adjustment recently, but there has not been many studies about the selection of the parameters. Design of the control chart can be classified into the statistical design and the economic design. The purpose of the economic design is to minimize the cost function in which all the possible costs occurring during the process are probability given the Type I error probability. In this paper the optimal parameters of the EWMA chart are selected for the economic design as well as for the statistical design. The optimal parameters for the economic design show significantly different from those of the statistical design, and especially the weight is always larger than that used in the statistical design. In the economic design, we divide the model into the single assignable cause model and the multiple assignable causes model caacording to number of which is used as the average context of the multiple assignable causes, it shows that the selection of the parameters may be misleading when the multiple assignable causes exist in practice.

  • PDF

The Study for Comparative Analysis of Software Failure Time Using EWMA Control Chart (지수 가중 이동 평균 관리도를 이용한 소프트웨어 고장 시간 비교분석에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.8 no.3
    • /
    • pp.33-39
    • /
    • 2008
  • Software failure time presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing. For data analysis of software reliability model, data scale tools of trend analysis are developed. The methods of trend analysis are arithmetic mean test and Laplace trend test. Trend analysis only offer information of outline content. In this paper, we discuss exponentially weighted moving average chart, in measuring failure time. In control, exponentially weighted moving average chart's uses are efficiency case of analysis with knowing information, Using real software failure time, we are proposed to use exponentially weighted moving average chart and comparative analysis of software failure time.

  • PDF

Online Experts Screening the Worst Slicing Machine to Control Wafer Yield via the Analytic Hierarchy Process

  • Lin, Chin-Tsai;Chang, Che-Wei;Wu, Cheng-Ru;Chen, Huang-Chu
    • International Journal of Quality Innovation
    • /
    • v.7 no.2
    • /
    • pp.141-156
    • /
    • 2006
  • This study describes a novel algorithm for optimizing the quality yield of silicon wafer slicing. 12 inch wafer slicing is the most difficult in terms of semiconductor manufacturing yield. As silicon wafer slicing directly impacts production costs, semiconductor manufacturers are especially concerned with increasing and maintaining the yield, as well as identifying why yields decline. The criteria for establishing the proposed algorithm are derived from a literature review and interviews with a group of experts in semiconductor manufacturing. The modified Delphi method is then adopted to analyze those results. The proposed algorithm also incorporates the analytic hierarchy process (AHP) to determine the weights of evaluation. Additionally, the proposed algorithm can select the evaluation outcomes to identify the worst machine of precision. Finally, results of the exponential weighted moving average (EWMA) control chart demonstrate the feasibility of the proposed AHP-based algorithm in effectively selecting the evaluation outcomes and evaluating the precision of the worst performing machines. So, through collect data (the quality and quantity) to judge the result by AHP, it is the key to help the engineer can find out the manufacturing process yield quickly effectively.

Bootstrap control limits of process control charts for correlative process data

  • Suzuki Hideo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.174-179
    • /
    • 1998
  • This research explores the application of the bootstrap methods to the construction of control limits for the x charts and the EWMA charts based on single observations with stationary autoregressive processes. The subsample means-based control chars in the presence autocorrelation are also considered. We use a technique for inferring confidence intervals using bootstrap, the percentile method. Simulation studies are conducted to compare the performance of the bootstrap method and that of standard method for constructing control charts under several conditions.

  • PDF

Statistical Process Control Software developed by MS-EXCEL and Visual Basic (MS-EXCEL과 Visual Basic으로 개발한 통계적 공정관리 소프트웨어)

  • Han, Kyung-Soo;Ahn, Jeong-Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 1996
  • In this study, we developed a software for statistical process control. This software presents $\bar{x}$, R, CUSUM, EWMA control chart and process capability index. In this system, statistical process control methods are integrated into the automated method on a real time base. It is available in process control of specified type and can be performed on personal computer with network system.

  • PDF

An Adaptive Moving Average (A-MA) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 적응형 이동평균 (A-MA) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.457-468
    • /
    • 2007
  • This paper proposes an adaptive moving average (A-MA) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI A-MA chart is to adjust sampling intervals as well as to accumulate previous samples selectively in order to increase the sensitivity. The VSI A-MA chart employs a threshold limit to determine whether or not to increase sampling rate as well as to accumulate previous samples. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI A-MA chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The control length L is introduced to prevent small mean shifts from being undetected for a long period. A Markov chain model is employed to investigate the VSI A-MA sampling process. Formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI A-MA chart is proposed. Comparative studies show that the proposed VSI A-MA chart is uniformly superior to the adaptive Cumulative sum (CUSUM) chart and to the Exponentially Weighted Moving Average (EWMA) chart, and is comparable to the variable sampling size (VSS) VSI EWMA chart with respect to the ATS performance.