• Title/Summary/Keyword: ET

Search Result 12,099, Processing Time 0.043 seconds

Evaluation for the flowers of compositae plants as whitening cosmetics functionality (국화과 꽃의 미백 화장품 기능성 검색)

  • Lee, Yeong-Geun;Lee, Junghoon;Lee, Na-Yeong;Kim, Nam-Kyun;Jung, Da-Won;Wang, Weiyi;Kim, Yoosung;Kim, Hyoung-Geun;Nguyen, Thi Nhan;Park, Haseung;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.5-11
    • /
    • 2017
  • 18 flowers of Compositae family were collected and extracted in aqueous methanol (MeOH). The concentrated extract was partitioned into n-hexane, ethyl acetate (EtOAc), n-BuOH, and water fractions. The extract and fractions were evaluated for total phenolics, total flavonoids, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and tyrosinase inhibition activity. n-Hexane and EtOAc fractions of Aster yomena, n-hexane fraction of Cosmos bipinnatus White, n-hexane and EtOAc fractions of C. bipinnatus Pink showed high total phenolics. And EtOAc fractions of A. yomena, C. bipinnatus White, C. bipinnatus Red, C. morifolium Froggy, and C. morifolium Himaya exhibited high total flavonoids. EtOAc fractions of A. yomena, C. bipinnatus White, C. bipinnatus Pink, C. morifolium Yellowmable, and MeOH extract of C. morifolium Rosa significantly scavenged DPPH radical. EtOAc fractions of C. chinensis, C. bipinnatus White, C. bipinnatus Red, C. morifolium Himaya, and C. morifolium Hongsim highly inhibited the tyrosinase activity. A. yomena, C. bipinnatus White, C. bipinnatus Pink, C. bipinnatus Red and C. morifolium Himaya are evaluated as good source for whitening cosmetics materials.

Protective Effects of Chaenomeles sinensis Koehne Extract on Ethanol-induced Liver Damage in Rat (에탄올에 의해 유발된 간독성에 대한 모과 추출물의 보호효과)

  • Lee, Yu-Mi;Lee, Jae-Joon;Shin, Hyoung-Duck;Lee, Myung-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1336-1342
    • /
    • 2006
  • This study was performed to investigate the effect of ethanol extract of Chaenomeles sinensis Koehne (CS) on alcohol-induced liver damage in rats. Male Sprague-Dawley rats weighing $135{\pm}10g$ were divided into 6 groups for 4 weeks; normal group (ND), alcohol (35%, 10 mL/kg/day) treated group (ET), CS ethanol extract 200 mg/kg/day treated group (ND-CSL), CS ethanol extract 400 mg/kg/day treated group (ND-CSH), CS ethanol extract 200 mg/kg/day and alcohol treated group (ET-CSL), and CS ethanol extract 400 mg/kg/day and alcohol treated group (ET-CSH). The body weight gain and food efficiency ratio were no differences between ND and ET. There were increases in the activities of serum alanine aminotransferase (ALT), asparate aminotransferase (AST), and alkaline phosphatase (ALP) in ET. On the other hand, the administration of CS decreased ALT, AST and ALP activities in serum. It was also observed that the hepatic activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and xanthine oxidase (XO) increased by alcohol treatment were also markedly decreased in the CS administered groups as compared with ET. The activities of hepatic SOD, catalase, GSH-Px and XO were riot significantly different among the normal diet groups. Contents of thiobarbituric acid reactive substances (TBARS) were increased by the administration of alcohol, on the other hand, the administration of CS reduced TBARS value in the liver. In addition, the content of glutathione (GSH) in the liver was decreased by alcohol administration, however, GSH increased after administering CS. In conclusion, the administration of alcohol develops the hyperoxidation of liver lipids through tile increase in enzymes activity related to the lipid peroxiation, however, it was decreased after administring CS. Thus, CS may have a possible protective effect on ethanol-induced hepatotoxicity in rat liver.

Long-Term Treatment with Enalapril Depresses Endothelin and Neuropeptide Y-induced Vasoactive Action in Spontaneously Hypertensive Rats (선천성 고혈압흰쥐에서 Endothelin과 Neuropeptide Y에 의한 심혈관계 반응에 Enalapril 장기처치가 미치는 영향)

  • Kim, Kwon-Bae;Sohn, Uy-Dong;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 1992
  • This study was designed to evaluate the responses of cardiovascular system to endothelin (ET) and neuropeptide Y (NPY) in 12 week-old SHR treated with or without enalapril (ENP) for 6 weeks. The diastolic blood pressure and heart rate were lower in ENP-treated SHR than in control. The pressor response to intravenous, but not intracerebroventricular, ET or NPY was attenuated by ENP treatment. The chronotropic action induced by electrical stimulation was attenuated by ENP or ET. The negative chronotropic action of ET was blocked by yohimbine. The increase in aortic tension induced by electrical field stimulation (EFS) was depressed in ENP-treated group as compared with non-treated group, and enhanced by ET, but not NPY, in the non-treated group. The ET-induced increase in tension was enhanced by removal of endothelium in the control group but not in ENP-treated group. The plasma concentration of norepinephrine and ET-induced increase in concentration of norepinephrine and epinephrine in plasma were decreased in ENP-treated group. These results suggest that preventive effect of enalapril on the development of hypertension may result from depressing vasoactive action of endothelin and neuropeptide Y, and sympathetic neurotransmission at peripheral nervous system.

  • PDF

Evaluation of the Biological Activity Affected by Extracting Solvents of Rosemary (Rosmarinus officinalis L.) (로즈마리(Rosmarinus officinalis L.) 극성별 용매 추출물의 생리활성 검증)

  • Li, Ke;Yang, Kyeong Hee;Guo, Lu;Cui, Zhengwei;Son, Beung Gu;Kang, Jum Soon;Lee, Yong Jae;Park, Young Hoon;Je, Beong Il;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • Rosemary (Rosmarinus officinalis L.) is widely used as a food material. Although various physiological activities of rosemary have been reported, there have been no studies on the physiological activity of solvent extracts with different polarities. Rosemary extracts were obtained by extraction of dried powder using 0%, 25%, 50%, 70%, and 95% ethanol (EtOH) in distilled water, methanol, ethyl acetate, and hexane. As these ratios of EtOH are generally chosen by default and scarcely optimized, we investigated the impact of the composition of EtOH in distilled water on extract-related characteristics, such as DPPH free radical scavenging and ${\alpha}$-glucosidase inhibition, on the differentiation of 3T3-L1 adipocytes and inhibition of tyrosinase. Adipogenesis inhibition was highest at 70% EtOH. DPPH scavenging activity and inhibition of tyrosinase activity were reduced with 50% EtOH in water. However, inhibition of ${\alpha}$-glucosidase activity was higher in 50% EtOH in water. The best solvents in terms of DPPH scavenging activity, inhibition of tyrosinase and ${\alpha}$-glucosidase, and differentiation of adipocytes obtained with different concentrations of EtOH, although a lower similar activities were found with 50% ethanol. Considering the extraction solvents, a ratio of EtOH in water gives different content and constituents of compounds. These differences will give activities inhibition of adipogenesis, tyrosinase, ${\alpha}$-glucosidase activity, and DPPH scavenging activity.

Anti-inflammatory Effect of Morinda citrifolia on LPS-induced Inflammation in RAW 264.7 Cells Through the JAK/STAT Signaling Pathway (JAK/STAT 신호전달 경로를 통한 LPS 유도 RAW 264.7 세포의 염증에 대한 노니의 항염증 효과)

  • Jo, Beom Gil;Bang, In Seok
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • This study investigated whether or not the major bioactive compounds of Noni (Morinda citrifolia) are involved in anti-inflammatory activity through the JAK/STAT upper signaling pathway in RAW 264.7 cells. The experimental results show that the M. citrifolia ethyl acetate fraction (Mc-EtOAc) obtained by sequential fractionation with organic solvents from the plant's dried fruits exhibits the highest antioxidant activity. In addition, the cytoprotective effects of Mc-EtOAc against H2O2-induced oxidative stress in the RAW 264.7 cells suppressed cytotoxicity in a dose-dependent manner. The group pretreated with Mc-EtOAc at a concentration of 240 ㎍/ml showed higher cell viability of 84.5%, compared to 71.6% in the LPS-treated group, and LPS-induced NO production decreased to half the amount in the positive control group. Mc-EtOAc treatment also led to a significant dose-dependent reduction in iNOS expression. Although COX-2 expression was increased by 300% following LPS induction, it was significantly decreased in a dose-dependent manner by pretreatment with Mc-EtOAc at concentrations of 120 and 240 ㎍/ml. An inhibition of the mRNA expression of pro-inflammatory cytokines IL-1β and TNF-α was observed. The investigation also revealed that the phosphorylation levels of pJAK1 and pSTAT3 in LPS-induced RAW 264.7 cells were significantly reduced by Mc-EtOAc treatment.

Identification of Canker-Causing Fungi Associated with Stems and Twigs of Chestnut Tree (밤나무의 줄기와 가지마름에 관여하는 병원균의 분리동정)

  • Sung Jae Mo;Han Sang Sup
    • Korean Journal Plant Pathology
    • /
    • v.2 no.3
    • /
    • pp.174-184
    • /
    • 1986
  • Eleven fungi were isolated from the cankered stems, branchs and twigs of chestmut trees collected from Chuncheon, Gapyung, Wonseong, Inje and Kanghwa during 1985-1986. Among them, Botryosphaeria dothide (Moug. ex Fries) Ces. et. de Notaris, Cryptodiaporthe castanea (Tulasne) Wehmeyer, Endothia singularis Sheaet Stevens, E. parasitica (Murrill) P. J. et H. W. Anderson and Pseudovasella modonia (Tulasne) Kobayas were identified as perithecial stage. Dathiorella castaneae Camara et Vasconcelos, Fusicoccum castaneun Saccardo, Catinula japanica st. nov., Endothiella singularis (H. et. P. Syd.) Shear et Stev. nom. seminud, E. parasitica And., nom. seminud., and Coryneum castaneae (Sacc.) comb. novo were identified as conidial stage Botryosphaeria dothidea causing canker or diebark but and Endothia parasitica causing Endothia canker were already reported in Korea. The other fungi are first reported in Korea.

  • PDF

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.

Preparation and Properties of Ethylene Vinyl Acetate/Ethylene-1-Butene Copolymer Blend Based Foam (Ethylene Vinyl Acetate / Ethylene-1-Butene Copolymer 블렌드 발포체의 제조와 특성)

  • Cha, Gil-Soo;Kim, Jin-Tae;Yoon, Jung-Sik;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • To increase the properties of EVA foam such as tensile strength, rebound resilience, and compression set, ethylene-1-butene copolymer (EtBC) was blended with EVA. After that crosslink characteristics of the blends and cell structures and mechanical properties of the foam were studied. As the amount of EtBC increased in EVA/EtBC blends, torque values of oscillating disc rheometer(ODR) increased and the foaming ratio decreased because the viscosity and crosslink density of EVA/EtBC blends increased. Foaming ratio and cell size of the foam increased by increasing the amount of foaming agent. When compared the mechanical properties of the foam which have same densities, tensile strength, rebound resilience, and compression set properties of the foam were improved by increasing the amount of EtBC in the EVA/EtBC blends.

  • PDF

A Study on Air Emission Spectra Observed by Using Electrothermal-Hollow Cathode Glow Discharge Spectrometry (Et-HCGDS) (Electrothermal-Hollow Cathode Glow Discharge Spectrometry(Et-HCGDS)를 이용하여 살펴본 Air Emission에 관한 연구)

  • Lee, Sang Chun;Shin, Jung-Sook;Kang, Mi-Ra
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.399-407
    • /
    • 1995
  • Electrothermal-Hollow Cathode Glow Discharge Spectrometry (Et-HCGDS) has been constructed in our laboratory for in-situ monitoring of traceble amounts of rare earth elements and actinides. Et-HCGDS is the portable glow discharge system that can perform the trace analysis of elements. The main structural design of Et-HCGDS was based upon the electrothermal heating and glow discharge techniques. More details on Et-HCGDS are available elsewhere. In this study, air was used as a flow gas for the glow discharge system. As a result, the emission spectra of air were collected and the assignment of air emission lines was performed with helps of pure nitrogen and oxygen emission spectra and previously published results. We found that the emission lines of air plasma were mainly due to nitrogen molecules. This paper includes the complete assignments of the air emission lines observed by using Et-HCGDS. Also, this study will be an useful reference for spectrochemical anaysis including air analysis.

  • PDF

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol

  • Kim, Min-Young;Ha, Gyu Ho;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2438-2442
    • /
    • 2014
  • A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.