Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2438

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol  

Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University)
Ha, Gyu Ho (Sampyeong High School)
Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Abstract
A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.
Keywords
Alkali-metal ion; Lewis acid catalyst; Inhibitor; Nucleofugality; Electrophilicity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 (c) Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550.   DOI
2 (a) Um, I. H.; Kim, C. W.; Kang, J. S.; Lee, J. I. Bull. Korean Chem. Soc. 2012, 33, 519-523.   DOI
3 (b) Um, I. H.; Song, Y. J.; Kim, M. Y.; Lee, J. I. Bull. Korean Chem. Soc. 2013, 34, 1525-1529.   DOI   ScienceOn
4 (a) Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803.   DOI   ScienceOn
5 (b) Um, I. H.; Im, L. R.; Kang, J. S.; Bursey, S. S.; Dust, J. M. J. Org. Chem. 2012, 77, 9738-9746.   DOI   ScienceOn
6 Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411.   DOI
7 (a) Martin, D. W.; Mayes, P. A.; Rodwell, V. W.; Granner, D. K. Harper's Review of Biochemistry, 20th Ed.; Lange Medical Publications: Los Altos, 1985; p 630.
8 (b) Dugas, H. Bioorganic Chemistry, 2nd Ed.; Springer-Verlag: New York, 1989; p 284.
9 Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113.
10 (a) Parker, V. D.; Kar, T.; Bethell, D. J. Org. Chem. 2013, 78, 9522-9525.   DOI   ScienceOn
11 (b) Bahou, M.; Witek, H.; Lee, Y. P. J. Chem. Phys. 2013, 138, 074310/1-074310/6.
12 (c) Sakic, D.; Vrcek, V. J. Phys. Chem. A 2012, 116, 1298-1306.   DOI   ScienceOn
13 (b) Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448.   DOI
14 (c) Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455.   DOI
15 (a) Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439.   DOI   ScienceOn
16 (b) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475.   DOI   ScienceOn
17 (c) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610.   DOI   ScienceOn
18 (d) Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167.   DOI   ScienceOn
19 (e) Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63.   DOI   ScienceOn
20 (a) Cacciapaglia, R.; Mandolini, L. Chem. Soc. Rev. 1993, 22, 221-231.   DOI   ScienceOn
21 (b) Cacciapaglia, R.; Mandolini, L.; Tomei, A. J. Chem. Soc., Perkin Trans. 2 1994, 367-372.
22 (c) Cacciapaglia, R.; Van Doorn, A. R.; Mandolini, L.; Reinhoudt, D. N.; Verboom, W. J. Am. Chem. Soc. 1992, 114, 2611-2617.   DOI
23 (d) Cacciapaglia, R.; Mandolini, L.; Reinhoudt, D. N.; Verboom, W. J. Phys. Org. Chem. 1992, 5, 663-669.   DOI
24 (e) Cacciapaglia, R.; Mandolini, L. J. Org. Chem. 1988, 53, 2579-2582.   DOI
25 Um, I. H.; Shin, Y. H.; Park, J. E.; Kang, J. S.; Buncel, E. Chem. Eur. J. 2012, 18, 961-968.   DOI   ScienceOn
26 (a) Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K. Y.; Buncel, E. J. Org. Chem. 2008, 73, 923-930.   DOI   ScienceOn
27 (e) Xu, X. F.; Zilberg, S.; Haas, Y. J. Phys. Chem. A 2010, 114, 4924-4933.
28 (b) Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
29 (a) Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon J. G. J. Chem. Soc. Chem. Commun. 1984, 162-163.
30 (d) Kolboe, S. J. Phys. Chem. A 2011, 115, 3106-3115.   DOI   ScienceOn
31 (a) Um, I. H.; Kang, J. S.; Shin, Y. H.; Buncel, E. J. Org. Chem. 2013, 78, 490-497.   DOI   ScienceOn
32 (b) Um, I. H.; Seo, J. Y.; Kang, J. S.; An, J. S. Bull. Chem. Soc. Jpn. 2012, 85, 1007-1013.   DOI
33 Jones, G. O.; Somaa, A. A.; O'Brien, J. M.; Albishi, H.; Al- Megren, H. A.; Alabdulrahman, A. M.; Alsewailem, F. D.; Hedrick, J. L.; Rice, J. E.; Horn, H. W. J. Org. Chem. 2013, 78, 5436-5443.   DOI   ScienceOn