Browse > Article
http://dx.doi.org/10.4014/jmb.1312.12010

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment  

Michel, Caroline (BRGM (Bureau de Recherches Geologiques et Minieres))
Joulian, Catherine (BRGM (Bureau de Recherches Geologiques et Minieres))
Ollivier, Patrick (BRGM (Bureau de Recherches Geologiques et Minieres))
Nyteij, Audrey (BRGM (Bureau de Recherches Geologiques et Minieres))
Cote, Remi (BRGM (Bureau de Recherches Geologiques et Minieres))
Surdyk, Nicolas (BRGM (Bureau de Recherches Geologiques et Minieres))
Hellal, Jennifer (BRGM (Bureau de Recherches Geologiques et Minieres))
Casanova, Joel (BRGM (Bureau de Recherches Geologiques et Minieres))
Besnard, Katia (VERI (Veolia Environment Recherche et Innovation))
Rampnoux, Nicolas (VERI (Veolia Environment Recherche et Innovation))
Garrido, Francis (BRGM (Bureau de Recherches Geologiques et Minieres))
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.6, 2014 , pp. 843-853 More about this Journal
Abstract
In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.
Keywords
Bioindicators; soil enzyme activities; 16S rRNA gene CE-SSCP fingerprints; microbial biomass; treated wastewater; groundwater recharge;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alkorta I, Amezaga I, Albizu I, Aizpurua A, Onaindia M, Buchner V, Garbisu C. 2003. Molecular microbial biodiversity assessment: a biological indicator of soil health. Rev. Environ. Health 18: 131-151.
2 Adrover M, Farrús E, Moyà G, Vadell J. 2012. Chemical properties and biological activity of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manage. 95: S188-S192.   DOI   ScienceOn
3 Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pitramellara G. 2004. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DDGE of total and extracellular DNA. Soil Biol. Biochem. 36: 859-868.   DOI   ScienceOn
4 Alkorta I, Aizpurua A, Riga P, Albizu I, Amezaga I, Garbisu C. 2003. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 18: 65-73.
5 Antunes S, Pereira R, Marques SM, Castro BB, Gonçalves F. 2011. Impaired microbial activity caused by metal pollution: a field study in a deactivated uranium mining area. Sci. Total Environ. 410: 87-95.
6 Arias M, González-Pérez J, González-Vila F, Ball A. 2005. Soil health - a new challenge for microbiologists and chemists. Int. Microbiol. 8: 13-21.
7 Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF. 2002. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 20: 171-181.   DOI   ScienceOn
8 Bouwer H. 1985. Renovation of wastewater with rapidinfiltration land treatment systems, pp. 249-282. In Asano T (ed.). Artificial Recharge of Groundwater. Butterworth Publishers, Boston.
9 Burger M, Jackson LE, Lundquist EJ, Louie DT, Miller RL, Rolston DE, Scow KM. 2005. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes. Biol. Fertil. Soils 42: 109-118.   DOI
10 Bouwer H, Pyne G, Goodrich J. 1990. Recharging groundwater. Civil Eng. 60: 63-66.
11 Braker G, Fesefeldt A, Witzel K-P. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769- 3775.
12 Bru D, Sarr A, Philippot L. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73: 5971-5974.   DOI   ScienceOn
13 Burgin AJ, Yang WH, Hamilton SK, Silver WL. 2011. Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front. Ecol. Environ. 9: 44-52.   DOI   ScienceOn
14 Chen Z, Liu Z, Wu M, Xie X, Wu J, Wei W. 2012. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb. Ecol. 63: 446-459.   DOI   ScienceOn
15 Dequiedt S, Saby NPA, Lelievre M, Jolivet C, Thioulouse J, Toutain B, et al. 2011. Biogeographical patterns of soil molecular biomass as influenced by soil characteristics and management. Global Ecol. Biogeogr. 20: 641-652.   DOI   ScienceOn
16 Deshmukh S, Singh A, Datta S, Annapurna K. 2011. Impact of long-term wastewater application on microbiological properties of vadose zone. Environ. Monit. Assess. 175: 601-612.   DOI
17 Dick R. 1997. Soil enzyme activities as integrative indicators of soil health, pp. 121-156. In Pankhurst CE, Doube BM, Gupta VVSR (eds.). Biological Indicators of Soil Health. CAB International, New York, USA.
18 Dick A, Cheng L, Wang P. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32: 1915-1919.   DOI   ScienceOn
19 Fox P, Narayanaswamy K, Genz A, Drewes J. 2001. Water quality transformations during soil aquifer treatment at the Mesa Northwest water reclamation plant, USA. Water Sci. Technol. 43: 343-350.
20 Fierer N, Schimel JP, Holden P. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35: 167-176.   DOI   ScienceOn
21 Foppen JWA. 2002. Impact of high-strength wastewater infiltration on groundwater quality and drinking water supply: the case of Sana'a, Yemen. J. Hydrol. 263: 198-216.   DOI   ScienceOn
22 Foppen JWA, van Herwerden M, Kebtie M, Noman A, Schijven JF, Stuyfzand PJ, Uhlenbrook S. 2008. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer. J. Contam. Hydrol. 95: 1-16.   DOI   ScienceOn
23 Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y. 2010. Groundwater sustainability strategies. Nat. Geosci. 3: 378-379.   DOI
24 Henry S, Baudoin E, Lopez-Gutierrez J, Martin-Laurent F, Baumann A, Philippot L. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59: 327-335.   DOI   ScienceOn
25 Hinojosa MB, García-Ruíz, Vinegla B, Carreira J. 2004. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcollar toxic spill. Soil Biol. Biochem. 36: 1637-1644.   DOI   ScienceOn
26 Hunt JR, Holden PA, Firestone MK. 1995. Coupling transport and biodegradation of VOCs in surface and subsurface soils. Environ. Health Perspect. 103: 75-78.   DOI
27 Khan S, El-Latif Hesham A, Qiao M, Rehman S, He J-Z. 2010. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 17: 288-296.   DOI
28 Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, et al. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfatereducing bacteria. J. Bacteriol. 183: 6028-6035.   DOI   ScienceOn
29 Masto R, Chhonkar P, Singh D, Patra A. 2009. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment. Environ. Geol. 56: 1237-1243.   DOI
30 Lance JC, Whisler FD. 1972. Nitrogen balance in soil columns intermittently flood with secondary sewage effluent. J. Environ. Qual. 1: 180-186.
31 Leggate J, Allain R, Isaac L. 2006. Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye. Biotechnol. Lett. 28: 1587-1594.   DOI
32 Malkawi H, Mohammad M. 2003. Survival and accumulation of microorganisms in soils irrigated with secondary treated wastewater. J. Basic Microbiol. 43: 47-55.   DOI   ScienceOn
33 Michelland R, Dejean S, Combes S, Fortun-Lamothe L, Cauquil L. 2009. StatFingerprints: a friendly graphical interface program for processing and analysis of microbial fingerprint profiles. Mol. Ecol. Resour. 9: 1359-1363.   DOI   ScienceOn
34 Miller GW. 2006. Integrated concepts in water reuse: managing global water needs. Desalination 187: 65-75.   DOI   ScienceOn
35 Miller JH, Ela WP, Lansey KE, Chipello PL, Arnold RG. 2006. Nitrogen transformation during soil aquifer treatment of wastewater effluent-oxygen effects in field studies. J. Environ. Eng. 132: 1298-1306.   DOI   ScienceOn
36 Nicolaisen M, Ramsing N. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203.   DOI   ScienceOn
37 Nielsen MN, Winding A. 2002. Microorganisms as indicators of soil health. In: Technical Report No. 388. National Environmental Research Institute, Denmark.
38 Oki T, Kanae S. 2006. Global hydrological cycles and world water resources. Science 313: 1068-1071.   DOI   ScienceOn
39 Ollivier P, Surdyk N, Azaroual M, Besnard K, Casanova J, Rampnoux N. 2013. Linking water quality changes to geochemical processes occurring in reactive soil column during treated wastewater infiltration using large-scale pilot experiment: insights into Mn behavior. Chem. Geol. 356: 109-125.   DOI   ScienceOn
40 Rajeb AB, Kallali H, Aissa NB, Bouzaiene O, Jellali S, Jedidi N, Hassen A. 2009. Soil microbial growth and biofilm expansion assessment under wastewater infiltration percolation treatment process: column experiments. Desalination 246: 514-525.   DOI   ScienceOn
41 Or D, Smets BF, Wraith J, Dechesne A, Friedman S. 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media - a review. Adv. Water Resour. 30: 1505-1527.   DOI   ScienceOn
42 Pavelic P, Dillon PJ, Mucha M, Nakai T, Barry KE, Bestland E. 2011. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems. Water Res. 45: 3153-3163.   DOI   ScienceOn
43 R Development Core Team. 2004. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.Rproject. org.
44 Rodell M, Velicogna I, Famiglietti JS. 2009. Satellite based estimates of groundwater depletion in India. Nature 460: 999-1002.   DOI   ScienceOn
45 Rubol S, Silver WL, Bellin A. 2012. Hydrologic control on redox and nitrogen dynamics in a peatland soil. Sci. Tot. Environ. 432: 37-46.   DOI   ScienceOn
46 Rudaz AO, Davidson EA, Firestone MK. 1991. Sources of nitrous-oxide production following wetting of dry soil. FEMS Microbiol. Ecol. 85: 117-124.   DOI
47 Schimel J, Balser TC, Wallenstein M. 2007. Microbial stressresponse physiology and its implications for ecosystem function. Ecology 88: 1386-1394.   DOI   ScienceOn
48 Silver WL, Lugo AE, Keller M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44: 301-328.
49 Srinivasulu M, Jaffer Mohiddin G, Subramanyam K, Rangaswamy V. 2012. Effect of insecticides alone and in combination with fungicides on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils. Environ. Geochem. Health 34: 365-374.   DOI   ScienceOn
50 Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP. 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37: L20402, DOI: 10.1029/ 2010GL044571.
51 Thioulouse J, Chessel D, Dolédec S, Olivier JM. 1997. ADE- 4: a multivariate analysis and graphical display software. Stat. Comput. 7: 75-83.   DOI   ScienceOn
52 Toze S, Hanna J, Smith T, Edmonds L, McCrow A. 2004. Determination of water quality improvements due to the artificial recharge of treated effluent, pp 53-60. In Steenvoorden J, Endreny T (eds.). International Symposium on Wastewater Re-Use and Groundwater Quality. International Association of Hydrological Sciences, Wallingford, UK.
53 Turner B, Baxter R, Whitton B. 2002. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. Environ. Pollut. 120: 313-317.   DOI   ScienceOn
54 Wada Y, van Beek LPH, Bierkens MFP. 2012. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48: W00L06, DOI: 10.1029/2011WR010562.
55 Wagner M, Roger A, Flax J, Brusseau G, Stahl D. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975-2982.
56 Zhang X, Zhao X, Zhang M. 2012. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge. FEMS Microbiol. Ecol. 80: 9-18.   DOI   ScienceOn