Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.2.125

Anti-inflammatory Effect of Morinda citrifolia on LPS-induced Inflammation in RAW 264.7 Cells Through the JAK/STAT Signaling Pathway  

Jo, Beom Gil (The Research Institute for Basic Sciences, Hoseo University)
Bang, In Seok (The Research Institute for Basic Sciences, Hoseo University)
Publication Information
Journal of Life Science / v.32, no.2, 2022 , pp. 125-134 More about this Journal
Abstract
This study investigated whether or not the major bioactive compounds of Noni (Morinda citrifolia) are involved in anti-inflammatory activity through the JAK/STAT upper signaling pathway in RAW 264.7 cells. The experimental results show that the M. citrifolia ethyl acetate fraction (Mc-EtOAc) obtained by sequential fractionation with organic solvents from the plant's dried fruits exhibits the highest antioxidant activity. In addition, the cytoprotective effects of Mc-EtOAc against H2O2-induced oxidative stress in the RAW 264.7 cells suppressed cytotoxicity in a dose-dependent manner. The group pretreated with Mc-EtOAc at a concentration of 240 ㎍/ml showed higher cell viability of 84.5%, compared to 71.6% in the LPS-treated group, and LPS-induced NO production decreased to half the amount in the positive control group. Mc-EtOAc treatment also led to a significant dose-dependent reduction in iNOS expression. Although COX-2 expression was increased by 300% following LPS induction, it was significantly decreased in a dose-dependent manner by pretreatment with Mc-EtOAc at concentrations of 120 and 240 ㎍/ml. An inhibition of the mRNA expression of pro-inflammatory cytokines IL-1β and TNF-α was observed. The investigation also revealed that the phosphorylation levels of pJAK1 and pSTAT3 in LPS-induced RAW 264.7 cells were significantly reduced by Mc-EtOAc treatment.
Keywords
Anti-inflammation; JAK/STAT pathway; Morinda citrifolia; pro-inflammatory cytokines; RAW 264.7 cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, J. M., Jo, Y. J. and Hahn, D. 2017. Physicochemical properties, bioactive composition and antioxidant activities of noni fruit juices from different regions of cultivation. Kor. J. Food Preserv. 24, 1000-1006.   DOI
2 Pan, X., Cao, X., Li, N., Xu, Y., Wu, Q., Bai, J., Yin, Z., Luo, L. and Lan, L. 2014. Forsythin inhibits lipopolysaccharideinduced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production. Inflamm. Res. 63, 597-608.   DOI
3 Park, E. J., Park, S. Y., Joe, E. H. and Jou, I. 2003. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J. Biol. Chem. 278, 14747-14752.   DOI
4 Qi, Z., Yin, F., Lu, L., Shen, L., Qi, S., Lan, L., Luo, L. and Yin, Z. 2013. Baicalein reduces lipopolysaccharide induced inflammation via suppressing JAK/STATs activation and ROS production. Inflamm. Res. 62, 845-855.   DOI
5 Stocker, R. and Keaney Jr, J. F. 2004. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381-1478.   DOI
6 Takeuchi, O. and Akira, S. 2001. Toll-like receptors; their physiological role and signal transduction system. Int. Immunopharmacol. 1, 625-635.   DOI
7 Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350-4354.   DOI
8 Chung, E. K., Seo, E. H., Park, J. H., Shim, H. R., Kim, K. H. and Lee, B. R. 2011. Anti-inflammatory and anti-allergic effect of extracts from organic soybean. Kor. J. Org. Agric. 19, 245-253.
9 Ammar, R. B., Bhouri, W., Sghaier, M. B., Boubaker, J., Skandrani, I., Neffati, A., Bouhlel, I., Kilani, S., Mariotte, A. M., Chekir-Ghedira, L., Dijoux-Franca, M. G. and Ghedira, K. 2009. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L (Rhamnaceae): a structure-activity relationship. Food Chem. 116, 258-264.   DOI
10 Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.   DOI
11 Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37, 355-361.   DOI
12 Yamamoto, Y. and Gaynor, R. B. 2004. IkappaB kinases: key regulators of the NF-kappa B pathway. Trends Biochem. Sci. 29, 2-79.
13 Okugawa, S., Ota, Y., Kitazawa, T., Nakayama, K., Yanagimoto, S., Tsukada, K., Kawada, M. and Kimura, S. 2003. Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am. J. Physiol. Cell Physiol. 285, 399-408.
14 Uttara, B., Singh, A. V., Zamboni, P. and Mahajan, R. T. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65-74.   DOI
15 Wen, Z., Zhong, Z. and Darnell Jr, J. E. 1995. Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241-250.   DOI
16 Yi, H. S., Heo, S, K., Yun, H. J., Choi, J. W., Jung, J. H. and Park, S. D. 2008. Anti-oxidative and anti-inflammatory effects of draconis resina in mouse macrophage cells. Kor. J. Herbology 23, 179-192.
17 Yoo, J. S., Hwang, J. T., Yoo, E. S. and Cheun, B. S. 2004. Study on herbal extract on the Noni (Morinda citriforia). Kor. J. Biotechnol. Bioeng. 19, 110-112.
18 Lawrence, T., Willoughby, D. A. and Gilroy, D. W. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol. 2, 787-795.   DOI
19 Kleinert, H., Wallerath, T., Fritz, G., Ihrig-Biedert, I., Rodriguez-Pascual, F., Geller, D. A. and Forstermann, U. 1998. Cytokine induction of NO synthase II in human DLD1 cells: roles of the JAK-STAT, AP-1 and NF-κB-signaling pathways. Br. J. Pharmacol. 125, 193-201.   DOI
20 Kovarik, P., Mangold, M., Ramsauer, K., Heidari, H., Steinborn, R., Zotter, A., Levy, D. E., Muller, M. and Decker, T. 2001. Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J. 20, 91-100.   DOI
21 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25, 402-408.   DOI
22 Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454, 428-435.   DOI
23 Tracey, K. J. 2002. The inflammatory reflex. Nature 420, 853-859.   DOI
24 Ganster, R. W., Taylor, B. S., Shao, L. and Geller, D. A. 2001. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc. Natl. Acad. Sci. USA. 98, 8638-8643.   DOI
25 Lee, S. B., Lee, W. S., Shin, J. S., Jang, D. S. and Lee, K. T. 2017. Xanthotoxin sup- presses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAKSTAT inactivation in RAW 264.7 macrophages. Int. Immunopharmacol. 49, 21-29.   DOI
26 Chan-Blanco, Y., Vaillant, F., Perez, A. M., Reynes, M., Brillouet, J. M. and Brat, P. 2006. The noni fruit (Morinda citrifolia L.): a review of agricultural research, nutritional and therapeutic properties. J. Food Compost. Anal. 19, 645-654.   DOI
27 Zin, Z. M., Abdul-Hamid, A. and Osman, A. 2002. Antioxidative activity of extracts from Mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food Chem. 78, 227-231.   DOI
28 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
29 Deng, S., West, B. J. and Jensen, C. J. 2010. A quantitative comparison of phytochemical components in global noni fruits and their commercial products. Food Chem. 122, 267-270.   DOI
30 Fukuzawa, K. and Takaoshi, Y. 1990. Antioxidants. J. Act. Oxyg. Free. Rad. 1, 55-70.
31 Ikeda, R., Wada, M., Nishigaki, T. and Nakashima, K. 2009. Quantification of coumarin derivatives in Noni (Morinda citrifolia) and their contribution of quenching effect on reactive oxygen species. Food Chem. 113, 1169-1172.   DOI
32 Levy, D. E. and Darnell Jr, J. E. 2002. STATs: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651-662.   DOI
33 Damsky, W. and King, B. A. 2017. JAK inhibitors in dermatology: the promise of a new drug class. J. Am. Acad. Dermatol. 76, 736-744.   DOI
34 Fu, Y., Liu, B., Zhang, N., Liu, Z., Liang, D., Li, F., Cao, Y., Feng, X., Zhang, X. and Yang, Z. 2013. Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-κB and MAPKs signaling pathways. J. Ethnopharmacol. 145, 193-199.   DOI
35 Han, Y. H., Chen, D. Q., Jin, M. H., Jin, Y. H., Li, J., Shen, G. N., Li, W. L., Gong, Y. X., Mao, Y. Y., Xie, D. P., Lee, D. S., Yu, L. Y., Kim, S. U., Kim, J. S., Kwon, T. H., Cui, Y. D. and Sun, H. N. 2020. Anti-inflammatory effect of hispidin on LPS induced macrophage inflammation through MAPK and JAK1/STAT3 signaling pathways. Appl. Biol. Chem. 63, 1-21.   DOI
36 Kim, S. O., Jeong, J. S. and Choi, Y. H. 2019. Antioxidant and anti-inflammatory effects of ethanol extract of Aster yomena in RAW 264.7 Macrophages. J. Life Sci. 29. 977-985.   DOI
37 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.   DOI
38 Moilanen, E. 2014. Two faces of inflammation: an immunopharmacological view. Basic Clin. Pharmacol. Toxicol. 114, 2-6.   DOI
39 Murray, P. J. 2007. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623-2629.   DOI