• Title/Summary/Keyword: ESS storage

Search Result 421, Processing Time 0.026 seconds

Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries (양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구)

  • Kim, Yong-Tae;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2021
  • With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

Sustainable Smart City Building-energy Management Based on Reinforcement Learning and Sales of ESS Power

  • Dae-Kug Lee;Seok-Ho Yoon;Jae-Hyeok Kwak;Choong-Ho Cho;Dong-Hoon Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1123-1146
    • /
    • 2023
  • In South Korea, there have been many studies on efficient building-energy management using renewable energy facilities in single zero-energy houses or buildings. However, such management was limited due to spatial and economic problems. To realize a smart zero-energy city, studying efficient energy integration for the entire city, not just for a single house or building, is necessary. Therefore, this study was conducted in the eco-friendly energy town of Chungbuk Innovation City. Chungbuk successfully realized energy independence by converging new and renewable energy facilities for the first time in South Korea. This study analyzes energy data collected from public buildings in that town every minute for a year. We propose a smart city building-energy management model based on the results that combine various renewable energy sources with grid power. Supervised learning can determine when it is best to sell surplus electricity, or unsupervised learning can be used if there is a particular pattern or rule for energy use. However, it is more appropriate to use reinforcement learning to maximize rewards in an environment with numerous variables that change every moment. Therefore, we propose a power distribution algorithm based on reinforcement learning that considers the sales of Energy Storage System power from surplus renewable energy. Finally, we confirm through economic analysis that a 10% saving is possible from this efficiency.

A Design Method of Transformer Turns Ratio with the Loss Components Analysis of an Isolated Bidirectional DC-DC Converter (절연형 양방향 DC-DC 컨버터의 손실 성분 분석을 통한 변압기 권선비 설계 방법)

  • Jung, Jae-Hun;Kim, Hak-Soo;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • This paper deals with transformer turns ratio design with the consideration of loss minimization in isolated bidirectional DC-DC converter. Generally, the rms value of current, magnitude of current at switching instance, and duty ratio of a converter vary according to the turns ratio of an isolation transformer in the converter under the same voltages and output power level. Therefore, the transformer turns ratio has an effect on the total loss in a converter. The switching and conduction losses of IGBTs and MOSFETs consisting of dual-active bridge converter are analyzed, and iron and copper losses in an isolation transformer and inductor are calculated. Total losses are calculated and measured in cases of four different transformer turns ratios through simulation and experiment with 3-kW converter, and an optimum turns ratio that provides minimum losses is found. The usefulness of the proposed transformer turns ratio design approach is verified through simulation and experimental results.

Development of the High Voltage EIS Instrument for the Evaluation of the Residual Useful Life of the Batteries (배터리의 잔여 수명 평가를 위한 고압 임피던스 분광장치의 개발.)

  • Farooq, Farhan;khan, Asad;Lee, Seung June;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.216-217
    • /
    • 2019
  • The battery powered electric vehicle (EV) is one of most promising technologies in 21st century. Though the lithium batteries are playing an important role in the EVs, they are only applicable until their capacities reach 80%, the end of its useful first life. Yet, these batteries can live a second life such as Energy Storage Systems (ESS). In order to utilize the Residual Useful Life (RUL) of the batteries the State of Health (SOH) of them needs to be estimated by a nondestructive test such as Electrochemical Impedance Spectroscopy (EIS) technique. Though many kinds of different EIS instruments are commercially available, most of them can only test a battery module less than 10V and the price of the instrument is very high. In this paper a low-cost EIS instrument suitable for measuring the impedance spectrum of the high voltage battery module is proposed and its validity is verified through the experiments. In order to prove the accuracy of the developed EIS instrument its measured impedance spectrum is compared with the results obtained by a commercial instrument. The Chi Square value calculated between two impedance spectrum measured by both developed and commercial instruments are less than 2%, which prove the strong correlation between two results.

  • PDF

SIMMER extension for multigroup energy structure search using genetic algorithm with different fitness functions

  • Massone, Mattia;Gabrielli, Fabrizio;Rineiski, Andrei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1250-1258
    • /
    • 2017
  • The multigroup transport theory is the basis for many neutronics modules. A significant point of the cross-section (XS) generation procedure is the choice of the energy groups' boundaries in the XS libraries, which must be carefully selected as an unsuitable energy meshing can easily lead to inaccurate results. This decision can require considerable effort and is particularly difficult for the common user, especially if not well-versed in reactor physics. This work investigates a genetic algorithm-based tool which selects an appropriate XS energy structure (ES) specific for the considered problem, to be used for the condensation of a fine multigroup library. The procedure is accelerated by results storage and fitness calculation speedup and can be easily parallelized. The extension is applied to the coupled code SIMMER and tested on the European Sustainable Nuclear Industrial Initiative (ESNII+) Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID)-like reactor system with different fitness functions. The results show that, when the libraries are condensed based on the ESs suggested by the algorithm, the code actually returns the correct multiplication factor, in both reference and voided conditions. The computational effort reduction obtained by using the condensed library rather than the fine one is assessed and is much higher than the time required for the ES search.

Bidirectional DC-DC Converter Based on Quasi-Sepic for Battery Charging System

  • Zhang, Hailong;Chen, Yafei;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.139-147
    • /
    • 2020
  • In order to satisfy the voltage levels of the low voltage battery side and high voltage DC bus, a high voltage gain with bidirectional operation is required. In this system, the cost effectiveness of the design is a critical factor; therefore, the system should be designed using a small number of components. This paper propose a novel bidirectional converter composed with a quasi-sepic and switched-indictor network. The proposed converter consists a small number of components with a high voltage gain ratio. Detailed analysis are made with respect to the operating mode, number of components, voltage and current ripple and efficiency. To verify performance of the proposed converter, simulation was performed is this paper. The simulation results are shown to verify the feasibility and performance of the proposed bidirectional converter.

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

Applications and Impact of V2G Technology for Electric Vehicle and Charging Infrastructure (전기자동차와 충전기반시설의 V2G 기술 활용과 영향에 관한 연구)

  • Lee, Sunguk;Park, Byungjoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.367-373
    • /
    • 2019
  • As the number of Battery Electric Vehicle (BEV) is increasing dramatically Vehicle-to-Grid (V2G) te chnology also has been spotlight from industry and academia recently. With help of V2G technology Battery of EV can play many important roles like as energy storage system (ESS) and electric energy resource in Smart Grid environment. This paper provides comprehensive review of Vehicle-to-Home(V2H), Vehicle-to-Building(V2B) and Vehicle-to-Grid(V2G) technologies. The economical analysis of these technologies is also discussed.

Performance Analysis of Heating Nonslip using Solar Power Energy (태양광 에너지를 이용한 발열논슬립의 성능분석)

  • Moon, Jong Wook;Choe, Jae Won;Yun, Seok Heon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2018
  • This study aims to analyze the performance of Heated-nonslip using renewable energy to prevent nonslip freezing during winter. For this purpose, power generation system and congratulatory devices using solar energy are designed, and it is designed to provide regular electricity to heat up nonslip through Electrical storage system(ESS). In this study, It is intended to analyze the level of electrical energy suitable for nonslip using 24V or 48V, and to measure the temperature changes and temperature distribution according to the location of the test object. As a result of the experiment, nonslip's frame temperature was measured at $-7.5{\sim}-5^{\circ}C$ on average, and $-1{\sim}-2^{\circ}C$ on the heating cable during the supply of 24V and this could not be the solution for defrosting freezing nonslip in the winter. As a result of heating nonslip by supplying 48V with an electrical power of 8W, the temperature of the nonslip was shown to be between $5^{\circ}C$ and $11^{\circ}C$ to $13^{\circ}C$. Even if the power supply was switched on and off every minute, the temperature did not drop below $4^{\circ}C$ and the frozen ice melted on the nonslip without freezing.