DOI QR코드

DOI QR Code

SIMMER extension for multigroup energy structure search using genetic algorithm with different fitness functions

  • Received : 2017.05.23
  • Accepted : 2017.07.26
  • Published : 2017.09.25

Abstract

The multigroup transport theory is the basis for many neutronics modules. A significant point of the cross-section (XS) generation procedure is the choice of the energy groups' boundaries in the XS libraries, which must be carefully selected as an unsuitable energy meshing can easily lead to inaccurate results. This decision can require considerable effort and is particularly difficult for the common user, especially if not well-versed in reactor physics. This work investigates a genetic algorithm-based tool which selects an appropriate XS energy structure (ES) specific for the considered problem, to be used for the condensation of a fine multigroup library. The procedure is accelerated by results storage and fitness calculation speedup and can be easily parallelized. The extension is applied to the coupled code SIMMER and tested on the European Sustainable Nuclear Industrial Initiative (ESNII+) Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID)-like reactor system with different fitness functions. The results show that, when the libraries are condensed based on the ESs suggested by the algorithm, the code actually returns the correct multiplication factor, in both reference and voided conditions. The computational effort reduction obtained by using the condensed library rather than the fine one is assessed and is much higher than the time required for the ES search.

Keywords

References

  1. H. Yamano, S. Fujita, Y. Tobita, K. Kamiyama, S. Kondo, K. Morita, E.A. Fischer, D.J. Brear, N. Shirakawa, X. Cao, M. Sugaya, M. Mizuno, S. Hosono, T. Kondo, W. Maschek, E. Kiefhaber, G. Buckel, A. Rineiski, M. Flad, T. Suzuki, P. Coste, S. Pigny, J. Louvet, T. Cadiou, SIMMER-III: A Computer Program for LMFR Core Disruptive Accident Analysis, JNC TN9400 2003-071, Japan Nuclear Cycle Development Institute, 2003.
  2. S. Kondo, H. Yamano, T. Suzuki, Y. Tobita, S. Fujita, X. Cao, K. Kamiyama, K. Morita, E.A. Fischer, D.J. Brear, N. Shirakawa, M. Mizuno, S. Hosono, T. Kondo, W. Maschek, E. Kiefhaber, G. Buckel, A. Rineiski, M. Flad, P. Coste, S. Pigny, J. Louvet, T. Cadiou, A Computer Program for LMFR Core Disruptive Accident Analysis, JNC TN9400 2001-002, Japan Nuclear Cycle Development Institute, 2000.
  3. M. Massone, F. Gabrielli, A. Rineiski, SIMMER extension for cross-section collapsing introduction, in: Proc. International Youth Nuclear Congress, Burgos, Spain, July 6-12, 2014, IYNC, 2014.
  4. M. Massone, F. Gabrielli, A. Rineiski, A genetic algorithm for multigroup energy structure search, Ann. Nucl. Energy 105 (2017) 369-387. https://doi.org/10.1016/j.anucene.2017.03.022
  5. M. Massone, F. Gabrielli, A. Rineiski, SIMMER extension for multigroup energy structure search using genetic algorithm, in: Proc. Int. Conf. M&C, Jeju, Korea, April 16-20, 2017, ANS, 2017.
  6. C. Yi, G. Sjoden, Energy group structure determination using particle swarm optimization, Ann. Nucl. Energy 56 (2013) 53-56. https://doi.org/10.1016/j.anucene.2012.12.020
  7. P. Mosca, A. Taofiki, P. Bellier, A. Prevost, Energy mesh optimization for multilevel calculation schemes, in: Proc. Int. Conf. M&C, Rio de Janeiro, Brazil, May 8-12, 2011, ANS, 2011.
  8. P. Mosca, C. Mounier, R. Sanchez, G. Arnaud, An adaptive energy mesh constructor for multigroup library generation for transport codes, Nucl. Sci. Eng. 167 (2011) 40-60. https://doi.org/10.13182/NSE10-10
  9. J.H. Holland, Outline for a logical theory of adaptive systems, J. ACM 9 (1962) 297-314. https://doi.org/10.1145/321127.321128
  10. J.H. Holland, Adaptation in Natural and Artificial Systems, University Michigan Press, Ann Arbor, MI, USA, 1975.
  11. D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Boston, MA, USA, 1989.
  12. J.A. Anderson, An Introduction to Neural Networks, The MIT Press, Cambridge, MA, USA, 1995.
  13. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, second ed., MIT Press and McGraw-Hill, Cambridge, MA, USA, 2001, pp. 214-217. ISBN 0-262-03293-7.
  14. D.E. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, Found. Genet. Algor. 1 (1991) 69-93.
  15. A. Rineiski, V. Sinitsa, F. Gabrielli, W. Maschek, C4P cross-section libraries for safety analyses with SIMMER and related studies, in: Proc. Int. Conf. M&C, Rio de Janeiro, Brazil, May 8-12, 2011, ANS, 2011.
  16. E. Kiefhaber, Updating of an 11-groups Nuclear Cross Section Set for Transmutation Applications. FZKA-6480, Forschungszentrum Karlsruhe, 2000.
  17. S. Bortot, F. Alvarez y Velarde, E. Fridman, I.G. Cruzado, N.G. Herranz, D. Lopez, K. Mikityuk, A.-L. Panadero, S. Pelloni, A. Ponomarev, P. Sciora, A. Seubert, H. Tsige-Tamirat, A. Vasile, European benchmark on the ASTRID-like lowvoid-effect core characterization: neutronic parameters and safety coefficients, in: Proc. ICAPP 2015, Nice, France, May 3-6, 2015, Societe Francaise d'Energie Nucleaire, 2015.
  18. InstitutsCluster II [Internet]. [Accessed 2017 Feb 6]. Available from: https://www.scc.kit.edu/dienste/ic2.php.
  19. B. Mcginley, F. Morgan, C. O'Riordan, Maintaining diversity through adaptive selection, crossover and mutation, in: Proc. GECCO 2008, Atlanta, Georgia, July 8-12, 2008, ACM, 2008.

Cited by

  1. Accelerated polynomial axial expansions for full 3D neutron transport MOC in the APOLLO3® code system as applied to the ASTRID fast breeder reactor vol.113, pp.None, 2017, https://doi.org/10.1016/j.anucene.2017.11.010
  2. Optimization of energy-group structure for LWR high-fidelity neutronics calculation based on the contributon theory vol.57, pp.4, 2020, https://doi.org/10.1080/00223131.2019.1691074
  3. Optimization algorithms based on contribution theory for broad-group energy structures in shielding calculation vol.186, pp.None, 2017, https://doi.org/10.1016/j.radphyschem.2021.109547