• Title/Summary/Keyword: ESD(Electrical Static Discharge)

Search Result 18, Processing Time 0.03 seconds

Characteristics of Double Polarity Source-Grounded Gate-Extended Drain NMOS Device for Electro-Static Discharge Protection of High Voltage Operating Microchip (마이크로 칩의 정전기 방지를 위한 DPS-GG-EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of the grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2-nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF

A Study on the Design of ESD Protection Circuit for Prevention of Destruction and Efficiency of LDO Regulator (LDO 레귤레이터의 파괴방지 및 효율성을 위한 ESD 보호회로 설계에 대한 연구)

  • Jeong-Min Lee;Sang-Wook Kwon;Seung-Hwan Baek;Yong-Seo Koo
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.258-264
    • /
    • 2023
  • This paper proposes an LDO regulator with a built-in ESD (Electro Static Discharge) protection circuit to effectively operate and prevent destruction of the LDO (Low Drop Out) regulator according to the load current. The proposed LDO regulator can more effectively adjust the gate node voltage of the pass transistor according to the output voltage of the LDO regulator by using an additional feedback current circuit structure. In addition, it is expected to have high reliability for the ESD situation by embedding a new structure that increases the holding voltage by about 2V by reducing the current gain on the SCR loop by adding a P+ bridge to the existing ESD protection device.

Electrical Properties of Multilayer Chip Varistor for ESD Protection with High Reliability. (고신뢰성 ESD보호용 칩 바리스터의 전기적 특성)

  • Yoon, Jung-Rag;Cho, Hyun-Moo;Lee, Jong-Deok;Park, Sang-Man;Lee, Young-Hie;Lee, Sung-Gap;Choe, Geun-Muk;Jeong, Tae-Seok;Lee, Seok-Won;Lee, Heon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.319-320
    • /
    • 2006
  • In order to improve the ESD(Electrical Static Discharge) resistance of multilayer chip varistors, we have investigated ZnO-$Pr_6O_{11}$ based chip varistor by applying tape casting technology, whose fundamental component were ZnO : $Pr_6O_{11}$ :$Co_3O_4$: $Y_2O_3$: $Al_2O_3$=93.67: 2.53:2.53:1.25 : 0.015 (wt %). The effect of sintering condition on the multilayer chip varistors and electric properties was studied. The electrical properties and ESD resistance of multilayer chip varistor could be influenced the sintering temperature and condition.

  • PDF

The comparison of ESD prevention characteristic of TVS with a Varistor at low voltage (저압회로에서의 TVS와 Varistor의 ESD 방지특성 비교)

  • 최홍규;송영주;이완윤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.105-109
    • /
    • 2002
  • A TVS and Varistor are preservative equipment against electro static discharge(ESD). We use a TVS for I/O protection of a circuit which has faster response time than a Varistor. And a Varistor has large power capability, therefore, which be used in input stage for internal pressure prevention. This paper will compare a TVS with a Varistor with respect to response characteristic to ESD in DC 24[V] low voltage circuit.

  • PDF

A Study On The Control Techniques Of Electra-Static Discharges Using Semiconductor Circuits (반도체 회로를 이용한 정전기제거에 관한 연구)

  • Oh, H.J.;Park, K.J.;Kim, B.I.;Kim, N.O.;kim, H.G.;Kim, D.T.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.19-24
    • /
    • 2002
  • Static electricity is an everyday phenomenon. There can be few of us who have not experienced a static shock after sliding across a car seat. Other static nuisance effects include the cling of some fabrics to the body, the sticking of a plastic document cover, or the attraction of dust to a TV or computer screen. However, static electricity has been a serious industrial problem. The age of electronics brought with it new problems associated with static electricity and electrostatic discharge. And, as electronic devices became faster and smaller, their sensitivity to ESD increased. In this work, We are study on the control technique of electo-static discharges using semiconductor circuits. Our circuits are prevented well to electrostatic shock or damages from triboelectric charging in cars everyday life.

  • PDF

Electrical Properties of Multilayer Chip Varistors in the Response Surface Analysis (반응표면분석법에 의한 적층 칩 바리스터의 전기적 특성)

  • Yoon, Jung-Rag;Jeong, Tae-Seok;Choi, Keun-Mook;Lee, Seok-Weon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.496-501
    • /
    • 2007
  • In order to enhance sintering characteristics on the $ZnO-Pr_6O_{11}$ based multilayer chip varistors (MLVs), a response surface analysis using central composite design method were carried out. As a result, varistor voltage($V_{1mA}$), nonlinear coefficient ($\alpha$), leakage current ($I_L$) and capacitance (C) were considered to be mainly affected by sintered temperature and holding time. MLVs sintered at $1200^{\circ}C$ and above $1200^{\circ}C$ revealed poor electrical characteristics, possibly due to the reaction between electrode materials(Pd) and $ZnO-Pr_6O_{11}$ based ceramics. On the sintering temperature range $1150{\sim}1175^{\circ}C$, nonlinear coefficient ($\alpha$) and leakage current ($I_L$) were shown to be $60{\sim}69$ and below $0.3{\mu}A$, respectively. In particular, MLVs sintered at $1175^{\circ}C$, 1.5 hr and $2^{\circ}C/hr$ (cooling speed) showed stable ESD(Electrical Static Discharge) characteristics under the condition of 10 times at 8 Kv with deviation varistor voltage, and deviation nonlinear coefficient were 0.3% and 0.33% (at positive), 0.55% (at negative), respectively.

A Study on The Design of High Speed-Low Voltage LVDS Driver Circuit with Novel ESD Protection Device (새로운 구조의 ESD 보호소자를 내장한 고속-저 전압 LVDS 드라이버 설계에 관한 연구)

  • Kim, Kui-Dong;Kwon, Jong-Ki;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.141-148
    • /
    • 2006
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low signal swing range, maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD Phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, The high speed I/O interface circuit with the low triggered ESD protection device in one-chip was designed.

  • PDF

A International tendency and damages by ESD for Industry (정전기(ESD)로 인한 국내산업 피해와 국제 동향)

  • Song, Sang-Hoon;Song, Kwang-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.256-257
    • /
    • 2007
  • 정전기방전(Electro-Static Discharge)에 의한 피해는 전기전자제품의 파괴, 분체의 유도성 폭발, 도장 시 화재 등의 산업 각 분야에 걸쳐 인명이나 물질적 형태로 방대하게 발생하고 있다. 본 논문에서는 이와 같은 여러 형태의 ESD 피해형태 중 전기전자제품 관련분야에 대한 국내외적인 동향을 소개하고자 한다. 반도체, 디스플레이, 등 전기전자 산업분야의 소형화, 고속화는 ESD에 대한 민감도를 증가시키고 있으며, 전기전자 환경의 모든 산업분야에서 제품의 생산성, 신뢰성, 안전성에 커다란 영향을 미치고 있다. 그러므로 ESD 관련 국내 산업의 피해실태와 원인, ESD 방지를 위한 국내기술의 수준을 파악하고, 국제적인 기술동향을 분석하는 것은 매우 중요한 일이다. 이를 바탕으로 한 국내 관련 산업의 국제적인 경쟁력 확보를 위한 국가차원의 관리시스템 및 교육제도 도입성의 필요성을 제시하고자 한다.

  • PDF

Electrical Characteristics and Thermal Reliability of Stacked-SCRs ESD Protection Device for High Voltage Applications

  • Koo, Yong Seo;Kim, Dong Su;Eo, Jin Woo
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.947-953
    • /
    • 2012
  • The latch-up immunity of the high voltage power clamps used in high voltage ESD protection devices is very becoming important in high-voltage applications. In this paper, a stacking structure with a high holding voltage and a high failure current is proposed and successfully verified in 0.18um CMOS and 0.35um BCD technology to achieve the desired holding voltage and the acceptable failure current. The experimental results show that the holding voltage of the stacking structure can be larger than the operation voltage of high-voltage applications. Changes in the characteristics of the stacking structure under high temperature conditions (300K-500K) are also investigated.

The novel SCR-based ESD Protection Device with High Holding Voltage (높은 홀딩전압을 갖는 사이리스터 기반 새로운 구조의 ESD 보호소자)

  • Won, Jong-Il;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • The paper introduces a silicon controlled rectifier (SCR)-based device with high holding voltage for ESD power clamp. The holding voltage can be increased by extending a p+ cathode to the first n-well and adding second n-well wrapping around n+ cathode. The increase of the holding voltage above the supply voltage enables latch-up immune normal operation. In this study, the proposed device has been simulated using synopsys TCAD simulator for electrical characteristic, temperature characteristic, and ESD robustness. In the simulation result, the proposed device has holding voltage of 3.6V and trigger voltage of 10.5V. And it is confirmed that the device could have holding voltage of above 4V with the size variation of extended p+ cathode and additional n-well.

  • PDF