• Title/Summary/Keyword: ERK1/2 protein

Search Result 588, Processing Time 0.026 seconds

Anti-inflammatory effects of Ishige sinicola ethanol extract in LPS-induced RAW 264.7 cell and mouse model (LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과)

  • Kim, Ji-Hye;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Cho, Kwang-Su;Kim, Go-Eun;XU, Xiaotong;Lee, Da-Hye;Park, Ga-Ryeong;Ahn, Dong-Hyun
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1149-1157
    • /
    • 2017
  • Inflammation is the first response of the immune system to infection or irritation in our body. The use of medicinal plants has been widely applied as an alternative source for drug development. One of marine natural resources, the anti-inflammatory effect of Ishige sinicola ethanol extract (ISEE), was evaluated by using LPS-induced RAW 264.7 cell and mice model. As a result, the production of nitric oxide (NO) and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) were inhibited with increasing concentration of ISEE without any cytotoxicity. Furthermore, ISEE suppressed the expression of not only inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-${\kappa}B$) p65, and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. In mice ear edema test, the formation of edema was reduced at the highest dosage of ISEE and the reduction of the number of infiltrated mast cells was observed in histological analysis. These results indicate that ISEE has a potent anti-inflammatory activity and can be used as a pharmaceutical material for many kinds of inflammatory disease.

Cytotoxic Effect and Protein Expression by Korean Regional Propolis on HeLa Ovarian Cancer Cell Line (HeLa 암세포주에 대한 국산 프로폴리스의 독성 효과 및 단백질 발현 변화)

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Kim, Se Gun;Bang, Kyung Won;Kim, Hyo Young;Choi, Hong Min;Moon, Hyo Jung
    • Journal of Apiculture
    • /
    • v.34 no.3
    • /
    • pp.245-254
    • /
    • 2019
  • We investigated the anti-tumor effects and molecular mechanism of Brazil, China and Korean regional propolis on HeLa ovarian cancer cell line. Each propolis extracts was prepared by ethanol extraction method. Cytotoxicity of propolis extracts was determinated by EZ-cytox cell viability assay. To necessity of anti-tumor effect and molecular mechanism of propolis, we must be adjusting propolis concentration. Due to 100 ㎍/mL of propolis extract were reduced cell viability to less than 50%, we adjusted all of propolis concentration to 100 ㎍/mL. By Western blotting analysis, we confirmed that anti-tumor mechanism of Brazil, China and Korea regional propolis has significantly difference. All of propolis was activated apoptosis related molecules such as PARP, caspase-3. However, cell proliferation signaling molecules including Akt1, ERK and Bcl-2 were reduced the protein expression level. Especially, the expression of tumor suppressor protein p53 was significantly increased in propolis-treated group such as Gyeonggi, Chungbuk, Chungnam, Jeonbuk, Gyeongnam and China. The phosphorylation of Bax which as apoptosis indicator was appeared in propolis-treated group such as Gyeonggi, Gangwon, Chungnam, Gyeongbuk, China. In this results showed that the regional propolis has completely different mechanism in anti-tumor. Thus, propolis extracts may be useful source of functional materials on anti-cancer and it will be able to choose the suitable propolis for cancer therapy by analyzing individual characteristics.

Valproic Acid Regulates α-Synuclein Expression through JNK Pathway in Rat Primary Astrocytes

  • Kim, Jung Nam;Kim, Min Kyeong;Cho, Kyu Suk;Choi, Chang Soon;Park, Seung Hwa;Yang, Sung-Il;Joo, So Hyun;Park, Jin Hee;Bahn, Geonho;Shin, Chan Young;Lee, He-Jin;Han, Seol-Heui;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2013
  • Although the role of ${\alpha}$-synuclein aggregation on Parkinson's disease is relatively well known, the physiological role and the regulatory mechanism governing the expression of ${\alpha}$-synuclein are unclear yet. We recently reported that ${\alpha}$-synuclein is expressed and secreted from cultured astrocytes. In this study, we investigated the effect of valproic acid (VPA), which has been suggested to provide neuroprotection by increasing ${\alpha}$-synuclein in neuron, on ${\alpha}$-synuclein expression in rat primary astrocytes. VPA concentration-dependently increased the protein expression level of ${\alpha}$-synuclein in cultured rat primary astrocytes with concomitant increase in mRNA expression level. Likewise, the level of secreted ${\alpha}$-synuclein was also increased by VPA. VPA increased the phosphorylation of Erk1/2 and JNK and pretreatment of a JNK inhibitor SP600125 prevented the VPA-induced increase in ${\alpha}$-synuclein. Whether the increased ${\alpha}$-synuclein in astrocytes is involved in the reported neuroprotective effects of VPA awaits further investigation.

Anti-inflammatory Activity of Extracts of Hovenia dulcis on Lipopolysaccharides-stimulated RAW264.7 Cells (LPS로 유도된 RAW264.7 대식세포에 대한 헛개나무(Hovenia dulcis) 추출물의 항염증 효과)

  • Woo, Hyun Sim;Lee, Sun Min;Heo, Jeong Doo;Lee, Min-Sung;Kim, Yeong-Su;Kim, Dae Wook
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.466-477
    • /
    • 2018
  • In this study, the anti-inflammatory activities of the extracts of different parts of Hovenia dulcis such as leaves, stems, and roots were investigated. Among them, the roots extract (RE) showed the most potent suppressive effect against pro-inflammatory mediators in LPS-stimulated mouse macrophage cells. RE induced dose-dependent reduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and concomitantly reduced the production of NO and $PGE_2$. Additionally, pre-treatment with RE significantly suppressed the production of inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin $(IL)-1{\beta}$, and IL-6, as well as mRNA levels. Moreover, phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear translocation of nuclear factor-kappa B (NF-kB) were also strongly attenuated by RE in RAW264.7 cell. Furthermore, RE induced HO-1 expression through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and increase HO-1 activity in RAW264.7 macrophages. Therefore, these results indicate that RE strongly inhibits LPS-induced inflammatory responses by blocking NF-kB activation, inhibiting MAPKs phosphorylation, and enhancing HO-1 expression in macrophages, suggesting that RE of H. dulicis and a major component, 27-O-protocatechuoylbetulinic acid could be applied as a valuable natural anti-inflammatory material.

Inhibitory Effects of Tenebrio molitor Larvae Ethanol Extract on RANKL-Induced Osteoclast Differentiation (갈색거저리 유충 에탄올 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Seo, Minchul;Baek, Minhee;Lee, Hwa Jeong;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.983-989
    • /
    • 2020
  • The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is key to bone health. An imbalance between osteoclasts and osteoblasts leads to various bone-related disorders, such as osteoporosis, osteomalacia, and osteopetrosis. However, the bone-resorption inhibitor drugs that are currently used may cause side effects. Natural substances have recently received much attention as therapeutic drugs for the treatment of bone health. This study was designed to determine the effect of Tenebrio molitor larvae ethanol extract (TME) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. To measure the effect of TME on osteoclast differentiation, RAW264.7 cells were treated with RANKL with or without TME for 5 days. The tartrate-resistant acid phosphatase (TRAP) activity was significantly inhibited by treatment of TME without cytotoxicity up to 2 mg/ml. In addition, TME effectively suppressed expression of osteoclast differentiation-related marker genes and proteins such as TRAP, NFATc1, and c-Src. TME also significantly inhibited the p38 mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and JNK signaling in RANKL-induced RAW264.7 cells. Consequently, we conclude that TME suppresses osteoclast differentiation by inhibiting RANKL-induced osteoclastogenic genes expression through the p38 MAPK signaling pathways. These results suggest that TME and its bioactive components are potential therapeutics for bone-related diseases such as osteoporosis.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Antioxidative Effects of Tenebrio molitor Larvae Extract Against Oxidative Stress in ARPE-19 Cells (ARPE-19 세포에서 산화적 스트레스에 대한 갈색거저리 추출물의 항산화 효과)

  • Bong Sun, Kim;Ra-Yeong, Choi;Eu-Jin, Ban;Joon Ha, Lee;In-Woo, Kim;Minchul, Seo
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.865-871
    • /
    • 2022
  • Tenebrio molitor larvae is well known as edible insect. Then, although it has been widely studied that Tenebrio molitor larvae has various bioactive functions such as antioxidant, anti-wrinkle, and anticancer. Nevertheless, antioxidant effects of Tenebrio molitor larvae water extract (TMH) has not been well described in Adult Retina Pigment Epithelial cell line (ARPE-19). In this study, we demonstrated that antioxidant effects of TMH against H2O2-induced oxidative stress in ARPE-19. Thus, we selected for our studies and performed a series of dose-response assay to determine the working concentration that lead to a consistent and high degree of cytotoxicity, which we defined as the level of H2O2 that killed 40% of the ARPE-19 cells. ARPE-19 cells were pre-treated with various concentrations of TMH (0.1 up to 2 mg/ml) before exposure to 300 µM H2O2. As we expected, TMH effectively prevented ARPE-19 cells from 300 µM H2O2-induced cell death in a dose-dependent manner. Furthermore, TMH inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Overall, the inhibitory effects of TMH on H2O2-induced apoptosis and oxidative stress were associated with the protection cleaved caspase-3, Bax, Bcl-2, and HO-1. The TMH suppressed H2O2-induced cell membrane leakage and oxidative stress in ARPE-19 cells. Thus, these results suggest that the TMH plays an important role in antioxidant effect in ARPE-19.

Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells

  • Baek, Ae Rin;Lee, Ji Min;Seo, Hyun Jung;Park, Jong Sook;Lee, June Hyuk;Park, Sung Woo;Jang, An Soo;Kim, Do Jin;Koh, Eun Suk;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.143-152
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor ${\beta}1$ (TGF-${\beta}1$)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-${\beta}1$-induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods: The A549 alveolar epithelial cell line was treated with TGF-${\beta}1$ with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and ${\alpha}$-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-${\beta}1$ receptor type 1 ($T{\beta}RI$) and type 2 ($T{\beta}RII$) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results: TGF-${\beta}1$-treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-${\beta}1$-induced change of the EMT phenotype. ApoA1 inhibited the TGF-${\beta}1$-induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-${\beta}1$-induced increase in $T{\beta}RI$ and $T{\beta}RII$ expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion: Our data demonstrate that ApoA1 inhibits TGF-${\beta}1$-induced EMT in experimental lung fibrosis.