• Title/Summary/Keyword: EMI noise

Search Result 253, Processing Time 0.022 seconds

Conducted Noise Reduction in Three-Phase Boost Converter using Random (3상 승압형 컨버터에 의한 전도노이즈 감소)

  • Jung, Dong-Hyo;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.79-82
    • /
    • 2003
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A Switching Method of Single Phase Grid Connected Inverter for Common Mode Noise Reduction (계통연계형 단상인버터의 Common Mode Noise 저감을 위한 Switching 방법)

  • Lee, Seung-Ju;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • A pulse-width modulation (PWM) method for common mode noise reduction in a PWM inverter connected to a single-phase grid is proposed in this study. The extensively used conventional switching method may experience common mode voltage problems, which generate current leakage and electromagnetic induction problems. In the proposed switching method, the neutral point of the output voltage is always fixed at both ends of the input voltage to reduce common mode noise. The validity of the proposed method is proven through simulation and experimental results.

GHz EMI Characteristics of 3D Stacked Chip PDN with Through Silicon Via (TSV) Connections

  • Pak, Jun-So;Cho, Jong-Hyun;Kim, Joo-Hee;Kim, Ki-Young;Kim, Hee-Gon;Lee, Jun-Ho;Lee, Hyung-Dong;Park, Kun-Woo;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.282-289
    • /
    • 2011
  • GHz electromagnetic interference (EMI) characteristics are analyzed for a 3dimensional (3D) stacked chip power distribution network (PDN) with through silicon via (TSV) connections. The EMI problem is mostly raised by P/G (power/ground) noise due to high switching current magnitudes and high PDN impedances. The 3D stacked chip PDN is decomposed into P/G TSVs and vertically stacked capacitive chip PDNs. The TSV inductances combine with the chip PDN capacitances produce resonances and increase the PDN impedance level in the GHz frequency range. These effects depend on stacking configurations and P/G TSV designs and are analyzed using the P/G TSV model and chip PDN model. When a small size chip PDN and a large size chip PDN are stacked, the small one's impedance is more seriously affected by TSV effects and shows higher levels. As a P/G TSV location is moved to a corner of the chip PDNs, larger PDN impedances appear. When P/G TSV numbers are enlarged, the TSV effects push the resonances to a higher frequency range. As a small size chip PDN is located closer to the center of a large size chip PDN, the TSV effects are enhanced.

The Improvement Method of Transfer Noise by Power Islands Resonace (Power Islands의 공진에 의한 잡음 전달 개선 방법)

  • 이신영;권덕규;이해영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • In this paper, we researched on the improved method for transferring noise which is generated from power island. In general case, the power island has a drawback where the noise transfer increase because of the structural resonance in each power bus. Thus, this paper suggests two improved methods that reduces the noise transfer. First method is to suppress the structural resonance by varying the source of the noise. The second method is to utilize the EGI in order to minimize the EGI in order to minimize the transfer of the noise when the resonance occurs. The simulation analysis shows that the relocation of the noise source dramatically minimized the resonance in power bus and the utilization of EGI has effectively reduced the noise transfer.

  • PDF

Non-Contact Gesture Recognition Algorithm for Smart TV Using Electric Field Disturbance (전기장 왜란을 이용한 비접촉 스마트 TV 제스처 인식 알고리즘)

  • Jo, Jung-Jae;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.124-131
    • /
    • 2014
  • In this paper, we propose the non-contact gesture recognition algorithm using 4- channel electrometer sensor array. ELF(Extremely Low Frequency) EMI and PLN are minimized because ambient electromagnetic noise around sensors has a significant impact on entire data in indoor environments. In this study, we transform AC-type data into DC-type data by applying a 10Hz LPF as well as a maximum buffer value extracting algorithm considering H/W sampling rate. In addition, we minimize the noise with the Kalman filter and extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensors. We implemented the DTW gesture recognition algorithm using extracted data and the time delayed information of peak values. Our experiment results show that average correct classification rate is over 95% on five-gesture scenario.

PCB Ground Structure Improvement for Radiation Noise Reduction (방사 잡음 감소를 위한 인쇄회로기판의 접지 구조 개선)

  • 송상화;권덕규;이해영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.233-238
    • /
    • 2003
  • With the growth of high speed circuit, unwanted system noise is increased and multipoint ground is used to reduce this noise. PCB screw ground structure has radiation noise by ground loop between screws. In order to solve this problem, in this paper, we proposed improved PCB ground structure. Proposed structure improves noise absorption by using microwave absorber and conductive copper tape. We measured radiation PCB noise in the range of 1 ㎓ to 3 ㎓ to investigate proposed structure usefulness. From these results, under 2 ㎓ range proposed structure has noise reduction by 2.62 dBuV/m, which compared with screw ground.

Single Phase Inverter High Frequency Circuit Modeling and Verification for Differential Mode Noise Analysis (차동 노이즈 분석을 위한 단상 인버터 고주파 회로 모델링 및 검증)

  • Shin, Ju-Hyun;Seng, Chhaya;Kim, Woo-Jung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • This research proposes a high-frequency circuit that can accurately predict the differential mode noise of single-phase inverters at the circuit design stage. Proposed single-phase inverter high frequency circuit in the work is a form in which harmonic impedance components are added to the basic single-phase inverter circuit configuration. For accurate noise prediction, parasitic components present in each part of the differential noise path were extracted. Impedance was extracted using a network analyzer and Q3D in the measurement range of 150 kHz to 30 MHz. A high-frequency circuit model was completed by applying the measured values. Simulations and experiments were conducted to confirm the validity of the high-frequency circuit. As a result, we were able to predict the resonance point of the differential mode voltage extracted as an experimental value with a high-frequency circuit model within an approximately 10% error. Through this outcome, we could verify that differential mode noise can be accurately predicted using the proposed model of the high-frequency circuit without a separate test bench for noise measurement.

TEM 도파관을 이용한 전자파 장해 측정 연구 및 표준화 동향

  • 권종화
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2002
  • EMI/EMS 측정을 위해서는 주변 전자파 잡음(background noise)이 낮은 야외시험장(Open Area Test Site)이 가장 바람직하나, 근래 전자(전기 기기 사용의 증가와 방송.무선통신 시스템의 다양화로 인한 인공잡음(artificial noise)의 증대로 조건에 부합된 부지 선정이 어렵고, 설치 비용이 매우 크며 날씨 변화에 따라 시험 계획이 변경 될 수도 있는 단점이 있다. 전자파 분-무반사실(Semi Anechoic Chamber)은 대부분의 환경 잡음을 감쇠시키므로 야외시험장처럼 장소의 구애를 받지 않아 도시나 혹은 제품 생산지 가까이에 설치 운용이 가능하다. 그러나 큰 설치 공간과 많은 시설 유지 비용을 필요로 하며, 저주파 대역에서는 반사에 의한 공진을 완전히 제거할 수 없어 성능이 떨어진다. 또한, 최근 컴퓨터 CPU의 동작주파수가 급속하게 높아지고 PCS, IMT-2000 등과 같은 이동전화의 사용주파수도 계속해서 높아짐에 다라 미연방통신위원회(Federal Communication Commission)에서는 5㎓까지의 복사 방출 시험을 요구하고 있다. IEC 61000-4-3 복사 내성 시험규격도 휴대폰 주파수인 2㎓까지 확장되었으며 IMT-2000, Bluetooth 등 새로운 이동통신서비스가 속속 개발됨에 따라 18㎓ 까지 시험 주파수가 확장되는 추세이다. 그러나, 현재 국내 각 연구실에서 보유하고 있는 야외시험장이나 전자파 반-무반사실의 경우 1㎓이상에서의 시험이 곤란하여 수 ㎓주파수대역에서 시험이 가능한 복사 및 내성시험 시설이 필요하게 되었다. 이러한 문제점들을 해결하기 위해 고안된 대용 측정 시설 중 대표적인 것이 TEM 셀이나 GTEM셀과 같은 TEM 도파관(waveguide) 형태의 장비들이다. 이들은 본래 EMS 측정을 위한 장비이지만 협소한 공간이나 외부와의 전자파 간섭의 우려가 없고, 설치가 비교적 자유로워 여러 연구기관에서 도파관 원리를 이용한 측정 방식을 연구(개발하여 범용적인 전자파 적합성 측정 장비로서 활용하고 있다. 야외시험장과 무반사실 등이 안테나에 의한 피시험기기 주변 공간에서의 1점 측정으로 인해 시험 시간이 많아 소요되는 공통적인 단점이 있는 반면, TEM 도파관에 의한 측정은 일단 피시험기기의 모델링 정보만 얻어지면 계산에 의해 EMI 측정을 바로 할 수 있다. <표 1>에서 현재 상용화되어 사용되고 있는 TEM/GTEM 셀, 야외 시험장 및 전자파 무반사실에 대해 EMI 측정과 관련된 몇 가지 사안에 대해 비교하였다. 본 문서에서는 야외시험장이나 전자파 반-무반사실 등과 같은 기존 EMI/EMS 측정 시설의 단점을 보완하고, 광대역 특성을 갖는 대용 측정 시설로서의 TEM 도파관에 대해 소개하고 야외시험장 결과와의 상관관계 알고리즘 및 표준화 동향에 대해 기술하였다. 2절에서는 대표적인 TEM 도파관 구조의 측정 시설인 TEM 셀과 GTEM 셀의 전기적.구조적 특징에 대해 간단히 기술하고, 3절에서는 TEM 셀과 GTEM 셀에서이 측정결과를 이용하여 야외 시험장 결과를 얻어내는 상관관계 알고리즘에 대해 기술하였다. 4절에서는 IEC/CISPR와 TC77에서의 표준화 활동을 중심으로 현재 진행중인 TEM 도파관 관련 표준화 동향과 내용에 대해 기술하고자 한다.

A Study on the Noise Reduction Method for Data Transmission of VLBI Data Processing System (VLBI 자료처리 시스템의 데이터 전송에서 잡음방지에 관한 연구)

  • Son, Do-Sun;Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Jin-Seung;Oh, Chung-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • KJJVC(Korea-Japan Joint VLBI Correlator) was installed at the KJCC(Korea-Japan Correlation Center) and has been operated by KASI(Korea Astronomy and Space Science Institute) from 2009. KJNC is able to correlate the VLBI observed data through KVN(Korean VLBI Network), VERA(VLBI Exploration of Radio Astrometry), and JVN(Japanese VLBI Network) and its joint network array. And it is used exclusively as computer in order to process the observed data for the scientific purpose KJJVC used the VSI(VLBI Standard Interface) as the VLBI international standard at the data input-output specification between each component. Especially, for correlating the observed data, the data is transmitted with 1024Mbps speed between Mark5B high-speed playback and RVDB(Raw VLBI Data Buffer). The EMI(Electromagnetic lnterference), which is occurred by data transmission with high-speed, cause the data loss and the loss occurrence is frequently often for long transmission cable. Finally it will be caused the data recognition error by decreasing the voltage level of digital data signal. In this paper, in order to minimize the data loss by measuring the EMI noise level in transmission of the VSI specification, the 3 methods such as 1) RC filtering method, 2) lmpedance matching using Microstrip line, and 3) Signal buffering method using Differential line driver, were proposed. To verify the effectiveness of each proposed method, the performance evaluation was conducted by implementing and simulations for each method. Each proposed method was effectively confirmed as the high-speed data transmission of the VSI specification.

Analysis of Several Digital Network Technologies for Hard Real-time Communications in Nuclear Plant

  • Song, Ki-Sang;No, Hee-Cheon;Kim, Dong-Hun;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.226-235
    • /
    • 1999
  • Applying digital network technology for advanced nuclear plant requires deterministic communication for tight safety requirements, timely and reliable data delivery for operation-critical and mission-critical characteristics of nuclear plant. Communication protocols, such as IEEE 802/4 Token Bus, IEEE 802/5 Token Ring, FDDI, and ARCnet, which have deterministic communication capability are partially applied to several nuclear power plants. Although digital communication technologies have many advantages, it is necessary to consider the noise immunity from electromagnetic interference (EMI), electrical interference, impulse noise, and heat noise before selecting specific digital network technology for nuclear plant. In this paper, we consider the token frame loss and data frame loss rate due to the link error event, frame size, and link data rate in different protocols, and evaluate the possibility of failure to meet the hard real-time requirement in nuclear plant.

  • PDF