• Title/Summary/Keyword: EM Modeling

Search Result 118, Processing Time 0.025 seconds

Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data (다변량 다수준 이항자료에 대한 일반화선형혼합모형)

  • Lim, Hwa-Kyung;Song, Seuck-Heun;Song, Ju-Won;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.923-932
    • /
    • 2008
  • We are likely to face complex multivariate data which can be characterized by having a non-trivial correlation structure. For instance, omitted covariates may simultaneously affect more than one count in clustered data; hence, the modeling of the correlation structure is important for the efficiency of the estimator and the computation of correct standard errors, i.e., valid inference. A standard way to insert dependence among counts is to assume that they share some common unobservable variables. For this assumption, we fitted correlated random effect models considering multilevel model. Estimation was carried out by adopting the semiparametric approach through a finite mixture EM algorithm without parametric assumptions upon the random coefficients distribution.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Atmospheric Dispersion Characteristics of Radioactive Materials according to the Local Weather and Emission Conditions

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Background: This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Materials and Methods: Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the $^{137}Cs$, using the WRF/HYSPLIT modeling system. Results and Discussion: The highest mean concentration of $^{137}Cs$ occurred at 0900 LST under the ME4_1 (main wind direction: SSW, daily average wind speed: $2.8ms^{-1}$), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, $4.1ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4_4 (S, $2.7ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 0300 LST because $^{137}Cs$ stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1_3 and EM2_3 that had the maximum total number of particles showed the widest dispersion of $^{137}Cs$, while its highest mean concentration was estimated under the EM1_1 considering the relatively narrow dispersion and high emission rate. Conclusion: This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of $^{137}Cs$ concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where $^{137}Cs$ is dispersed, the emission rate of $^{137}Cs$, and the number of emitted particles.

The Roles and Importance of Critical Evidence (CE) and Critical Resource Models (CRMs) in Abductive Reasoning for Earth Scientific Problem Solving (지구과학 문제 해결을 위한 귀추적 추론에서 결정적 증거와 결정적 자원 모델의 역할과 중요성)

  • Oh, Phil Seok
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.426-446
    • /
    • 2017
  • The purpose of this study was to analyze undergraduate students' reasoning for solving a problem about a rock and investigate the roles and importance of critical evidence (CE) and critical resource models (CRMs) in abductive reasoning. Participants were 20 senior undergraduate students enrolled in a science major course in a university of education. They were asked to abductively infer geologic processes of sedimentary rocks having a lot of holes and represent them with models. Their reasoning were analyzed according to a scheme for modeling-based abductive reasoning. As a result, successful student reasoning was characterized by using a diversity of grains and lots of holes as CE, activating the sedimentary rock formation and weathering as CRMs, and combining the CRMs into a scientifically sound explanatory model (SSEM). By contrast, in the reasoning unsuccessful in proposing a SSEM, students activated the igneous rock (basalt) formation and deposition as resource models (RMs) based on the evidence of the holes in the rocks and diverse grains, respectively, and used the RMs to construct their own explanatory models (EMs). It was suggested that to construct SSEMs to solve earth scientific problems about rocks, students need to know what could be CE in a particular problem situation, take an integrative or systemic approach to a rock problem, use multiple RMs, and evaluate RMs or EMs in light of evidence.

E-Band Bond-Wire Modeling and Matching Network Design (E-대역 본드와이어 모델링 및 정합회로 설계)

  • Kim, Kimok;Kang, Hyunuk;Lee, Wooseok;Choi, Doohun;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.401-406
    • /
    • 2018
  • In this paper, we present E-band bond-wire modeling and a matching network to compensate for the effect of the bond-wire. The impedance of the bond-wires is extracted using three-dimensional electromagnetic simulation. The matching network was designed using a simple structure. The implemented matching network was verified with a commercial 71~81 GHz LNA IC and an interconnection based on the WR-12 waveguide. The matching network increases the transmission coefficient of the system by up to 4.5 dB, power gain by up to 3.12 dB, $P_{1dB}$ by up to 2.2 dB, and improves the gain flatness by ${\pm}1.07dB$.

Electromagnatic Effect Analysis inside Electrically Large Structures Using Topological Modeling and PWB Method (위상학적 모델링과 PWB Method를 이용한 대형 구조물 내부의 전자파 영향 해석)

  • Lee, Jae-Min;Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.284-290
    • /
    • 2016
  • As the recently advanced scientific developments result in high lever of the usability and the needs for the electrical equipment and devices in various situations, the safety technologies protecting malfunction and electrical critical damages including soft and hardware from the unexpectedly radiated electromagnetic interferences are required gradually. In addition, the numerical analysis for the miniaturized electrical components and equipments as well as the conventional electrical devices installed inside the electrically large enclosures and structures requires the memory requirement and time consumption too big to be handled in a realistic situation, which will result in a limitation in solving the complete set of maxwell's equations. In this paper, PWB method based on statistical theory and topological modeling with appropriate zoning concepts are introduced for the EM analysis of an electrically large complex structures.

Interpretation on GDS(Geomagnetic Depth Sounding) data in and around Korean peninsula using 3-D MT modeling (3차원 MT 모델링을 통한 한반도 및 주변의 GDS(Geomagnetic Depth Sounding) 자료 해석)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Ryu, Yong-Gyu;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.124-131
    • /
    • 2005
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine deep geo-electrical structures of the Korean peninsula. In this study, five additive GDS sites acquired in south-eastern area of the Korea were integrated into twelve previous GDS results. In addition, 3-D MT modeling considering the surrounding seas of the Korean peninsula was performed to evaluate sea effect at each GDS site quantitatively. As a result, Observed real induction arrows was not explained by solely sea effect, two conductive structures that are able to explain differences between observed and calculated induction arrows, was suggested. The first conductive structure is the Imjingang Belt, which is thought as a extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at YIN and ICHN sites. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling generated in back-basin region. The effects of the HCL are also confirmed at KZU, KMT101, 107 sites, in the south-eastern of the Korean peninsula.

  • PDF

Frequency Response Analysis on PCB in Dual Resonant Cavity by Using Stochastical and Topological Modeling (확률론과 위상학적 모델링을 이용한 이중 공진구조 내의 PCB 주파수 응답해석)

  • Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.919-929
    • /
    • 2014
  • In recent, the requirements for the safety to the effects of high power electromagnetic wave have been increased along with the development of electricity and electronic equipments. The small sized electronic devices and the various components have been analyzed by using the full-EM simulation and solving a complete set of Maxwell equation. However, the deterministic approach has a drawback and much limitation in the electromagnetic analysis of an electrically large cavity with a high complexity of the structure. In this paper, statistical theory and topological modeling method are combined to analyze the large cavity with a complex structure. In particular, the PWB(Power Balance) method and BLT(Baum-Liu-Tesche) equation are combined and employed to solve the frequency response to the large-scaled cavity with remarkably reduced time-consumption. For instance, a PCB substrate inside box of box are considered as a large structure with a complexity.

Measurements and Statistical Modeling of Ignition Noise from Vehicle (자동차 점화계통에서 발생된 전자파 잡음의 측정 및 통계적 모형)

  • 김종호;윤현보;백락준;우종우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.4
    • /
    • pp.390-402
    • /
    • 1997
  • The ignition noises from the vehicle are measured and the measurement data are statistically treated for modeling. The low-noise amplifier and band-pass filter are added between the receiver and the three axes antenna for low noise level measurement and the APD and PSD are measured in 800 MHz frequency range. The measured APD curves can be expressed in terms of sensitivity study of each model through 3(class A) or 6(Class B) parameters variation, and these optimal parameter can easily be calculated by using the Composite Approximation Algorithm. The selected APD parameter can be used for making the Data Base EM-environments and also applied to determine the output and sensitivity margin for the transmitter and receiver. 'Digital microwave transmission systems are equipped with equalizer against fading during multipath fading. In this paper, we proposed variable reference tap position equalizer that varies the reference tap according to fading type to archive better performance. We got the perf?mance improvement about 4~5 dB in MP condition and 2~3 dB in NMP condition from simulation results.

  • PDF

Design of a Robust Precision Aerial Delivery System Soft Landing Algorithm (외란에 강인한 정밀공중물자수송시스템 연착륙 알고리즘 설계)

  • Kim, Taewook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-87
    • /
    • 2022
  • The Precision Aerial Delivery System is an instrument designed to improve the poor landing accuracy of aerial delivery system with conventional circular parachutes, and is equipped with an Airborne Guidance Unit to safely transport supplies to the desired destination. Currently, the landing accuracy of the PADS product is reported as CEP50 100m and also differs significantly, depending on the actual topography and weather environment. In this study, HILS was constructed based on the 6DOF nonlinear modeling of PADS to analyze the maneuver characteristics of Ram Air Parachute under wind environments. By using the new algorithm a precision soft landing algorithm including Energy Management and Final Approach is designed. HILS results show that it is possible to achieve a precise soft landing within CEP50 40m, and it can be exploited to develop an actual PADS drop test.