• Title/Summary/Keyword: EEG processor

Search Result 8, Processing Time 0.025 seconds

A 95% accurate EEG-connectome Processor for a Mental Health Monitoring System

  • Kim, Hyunki;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • An electroencephalogram (EEG)-connectome processor to monitor and diagnose mental health is proposed. From 19-channel EEG signals, the proposed processor determines whether the mental state is healthy or unhealthy by extracting significant features from EEG signals and classifying them. Connectome approach is adopted for the best diagnosis accuracy, and synchronization likelihood (SL) is chosen as the connectome feature. Before computing SL, reconstruction optimizer (ReOpt) block compensates some parameters, resulting in improved accuracy. During SL calculation, a sparse matrix inscription (SMI) scheme is proposed to reduce the memory size to 1/24. From the calculated SL information, a small world feature extractor (SWFE) reduces the memory size to 1/29. Finally, using SLs or small word features, radial basis function (RBF) kernel-based support vector machine (SVM) diagnoses user's mental health condition. For RBF kernels, look-up-tables (LUTs) are used to replace the floating-point operations, decreasing the required operation by 54%. Consequently, The EEG-connectome processor improves the diagnosis accuracy from 89% to 95% in Alzheimer's disease case. The proposed processor occupies $3.8mm^2$ and consumes 1.71 mW with $0.18{\mu}m$ CMOS technology.

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2548-2554
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor is designed, which is based on a single-memory bank architecture and the radix-4 algorithm. The designed FFT processor has been verified by FPGA implementation, and has high accuracy with arithmetic error less than 2%.

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Kim, Hae-Ju;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.88-91
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor based on single-memory bank architecture and radix-4 algorithm is designed. The designed FFT processor has high accuracy with arithmetic error less than 3%.

  • PDF

Simple Digital EEG System Utilizing Analog EEG Machine (아날로그 뇌파기를 응용한 간단한 디지털 뇌파 시스템)

  • Jung, Ki-Young;Kim, Jae-Moon;Jung, Man-Jae
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • Purpose : The rapid development and wide popularity of Digital EEG(DEEG) is due to its convenience, accuracy and applicability for quantitative analysis. These advantages of DEEG make one hesitate to use analog EEG(AEEG). To assess the advantage of DEEG system utilizing AEEG(DAEEG) over conventional AEEG and the clinical applicability, a DAEEG system was developed and applied to animal model Methods : Sprague-Dawley rat as status epilepticus model were used for collecting the EEG data. After four epidural electrodes were inserted and connected to 8-channel analog EEG(Nihon-Kohden, Japan), continous. EEG monitoring via computer screen was done from two rats simultaneously. EEG signals through analog amplifier and filters were digitized at digital signal processor and stored in Windows-based pentium personal computer. Digital data were sampled at a rate of 200 Hz and 12 bit of resolution. Acquisition software was able to carry out 'real-time view, sensitivity control and event marking' during continuous EEG monitoring. Digital data were stored on hard disk and hacked-up on CD-ROM for off-line review. Review system consisted of off-line review, saving and printing out interesting segment and annotation function. Results: This DAEEG system could utilize most major functions of DEEG sufficiently while making a use of an AEEG. It was easy to monitor continuously compared to Conventional AEEG and to control sensitivity during ictal period. Marking the event such as a clinical seizure or drug injection was less favorable than AEEG due to slowed processing speed of digital processor and central processing unit. Reviewing EEG data was convenient, but paging speed was slow. Storage and management of data was handy and economical. Conclusion : Relatively simple digital EEG system utilizing AEEG can be set-up at n laboratory level. It may be possible to make an application for clinical purposes.

  • PDF

A Study on the Real-time Electroencephalography analysis (실시간 뇌파분석에 관한 연구)

  • Song, J.S.;Yoo, S.K.;Kim, S.H.;Kim, N.H.;Kim, K.M.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.278-281
    • /
    • 1995
  • In this paper, we have developed EEG (electroencephalography) analyzer for monitoring the condition of brain in neurological surgery. This system is composed of EEG amplifier. personal-computer and BSP (Digital Signal Processor). By parallel processing of DSP, this system can analysis the power spectral density change of EEG in real-time and display the CSA(Compressed Spectral Array) and CDSA(Color Density Spectral array) of EEG. This system was tested by real EEG and showed the change of EEG.

  • PDF

Development and Verification of Digital EEG Signal Transmission Protocol (디지털 뇌파 전송 프로토콜 개발 및 검증)

  • Kim, Do-Hoon;Hwang, Kyu-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.623-629
    • /
    • 2013
  • This paper presents the implementation result of the EEG(electroencephalogram) signal transmission protocol and its test platform. EEG measured by a dry-type electrode is directly converted into digital signal by ADC(analog-to-digital converter). Thereafter it is transferred DSP(digital signal processor) platform by $I^2C$(inter-integrated circuit) protocol. DSP conducts the pre-processing of EEG and extracts feature vectors of EEG. In this work, we implement the $I^2C$ protocol with 16 channels by using 10 or 12-bit ADC. In the implementation results, the overhead ratio for the 4 bytes data burst transmission measures 2.16 and the total data rates are 345.6 kbps and 414.72 kbps with 10-bit and 12-bit 1 ksps ADC, respectively. Therefore, in order to support a high speed mode of $I^2C$ for 400 kbps, it is required to use 16:1 and $(8:1){\times}2$ ratios for slave:master in 10-bit ADC and 12-bit ADC, respectively.

Modeling for Implementation of a BCI System (BCI 시스템 구현을 위한 모델링)

  • Kim, mi-Hye;Song, Young-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.41-49
    • /
    • 2007
  • BCI system integrates control or telecommunication system with generating electric signals in scalp itself after signal acquisition. This system detect a movement of EEG at real time, can control an electron equipment using a generated signal through EEG movement or software-based processor. In this paper, we deal with removing and separating artifacts induceced from measurement when brain-computer interface system that analyzes recognizes EEG signals occurred from various mental states. In this paper, we proposed a method of EEG classification and an artifact interval detection using bisection mathematical modeling in the EEG classification process for BCI system implementation.

A Biosignal-Based Human Interface Controlling a Power-Wheelchair for People with Motor Disabilities

  • Kim, Ki-Hong;Kim, Hong-Kee;Kim, Jong-Sung;Son, Wook-Ho;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.111-114
    • /
    • 2006
  • An alternative human interface enabling people with severe motor disabilities to control an assistive system is presented. Since this interface relies on the biosignals originating from the contraction of muscles on the face during particular movements, even individuals with a paralyzed limb can use it with ease. For real-world application, a dedicated hardware module employing a general-purpose digital signal processor was implemented and its validity tested on an electrically powered wheelchair. Furthermore, an additional attempt to reduce error rates to a minimum for stable operation was also made based on the entropy information inherent in the signals during the classification phase. In the experiments, most of the five participating subjects could control the target system at their own will, and thus it is found that the proposed interface can be considered a potential alternative for the interaction of the severely disabled with electronic systems.

  • PDF