• Title/Summary/Keyword: E. faecium

Search Result 148, Processing Time 0.026 seconds

Synergistic Effect of Physico-chemical Treatment and Bacteriocin Produced by Enterococcus faecium MJ-14 (Enterococcus faecium MJ-14가 생산하는 박테리오신과 물리화학적 처리의 상승효과)

  • Lim Sung-Mee
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • When L. monocytogenes ($10^{5}CFU/mL$) at exponential phase cells were heated for 5 min at $65^{\circ}C$ in the presence of the bacteriocin (30 BU/mL) produced by E. faecium MJ-14, the number of viable cells was markedly reduced at p < 0.05. The bactericidal effect of bacteriocin showed synergism with combination ot organic acids (citric acid or acetic acid) or chemical preservatives (sodium benzoate, sodium lactate, sodium nitrate or potassium nitrate). For example, the number of viable cells was reduced by 4.8 log units under combination of the bacteriocin (30 BU/mL) and sodium nitrate ($100{\mu}g/mL$), while it was reduced by 1.1 log unit only under single treatment of the bacteriocin after 12 k at $37^{\circ}C$. The addition of the bacteriocin (300 BU/mL) into skim milk inoculated with L. monocytogenes ($10^{5}$CFU/mL) reduced the cells by 1.5 log unit, in case of the cell suspension stored at $4^{\circ}C$ for 24 hr. Moreover, L. monocytogenes was reduced by 2 log unit when stored at $-20^{\circ}C$ for 7 days in gound pork added with 300 BU/mL of 린e bacteriocin.

Characterization of Veterinary Hospital-Associated Isolates of Enterococcus Species in Korea

  • Chung, Yeon Soo;Kwon, Ka Hee;Shin, Sook;Kim, Jae Hong;Park, Yong Ho;Yoon, Jang Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.386-393
    • /
    • 2014
  • Possible cross-transmission of hospital-associated enterococci between human patients, medical staff, and hospital environments has been extensively studied. However, limited information is available for veterinary hospital-associated Enterococcus isolates. This study investigated the possibility of cross-transmission of antibiotic-resistant enterococci between dog patients, their owners, veterinary staff, and hospital environments. Swab samples (n=465) were obtained from five veterinary hospitals in Seoul, Korea, during 2011. Forty-three Enterococcus strains were isolated, representing seven enterococcal species. E. faecalis and E. faecium were the most dominant species (16 isolates each, 37.2%). Although slight differences in the antibiotic resistance profiles were observed between the phenotypic and the genotypic data, our antibiogram analysis demonstrated high prevalence of the multiple drug-resistant (MDR) isolates of E. faecalis (10/16 isolates, 62.5%) and E. faecium (12/16 isolates, 75.0%). Pulsed-field gel electrophoretic comparison of the MDR isolates revealed three different clonal sets of E. faecalis and a single set of E. faecium, which were isolated from different sample groups or dog patients at the same or two separate veterinary hospitals. These results imply a strong possibility of cross-transmission of the antibiotic-resistant enterococcal species between animal patients, owners, veterinary staff, and hospital environments.

Bioactive Compound Produced by Endophytic Fungi Isolated From Pelargonium sidoides Against Selected Bacteria of Clinical Importance

  • Manganyi, Madira Coutlyne;Tchatchouang, Christ-Donald K.;Regnier, Thierry;Bezuidenhout, Cornelius Carlos;Ateba, Collins Njie
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.335-339
    • /
    • 2019
  • Endophytic fungi have the ability to live inside the host plant tissues without causing neither symptoms of diseases/or harm. Opportunistic infections are accountable for majority of the outbreaks, thereby putting a burden on the health system. To investigate and characterize the bioactive compounds for the control of bacteria of clinical importance, extracts from endophytic fungi were isolated from indigenous South African medicinal plants. Extracts from endophytic fungi were isolated from 133 fungal strains and screened against Gram positive and negative bacteria namely Bacillus cereus, Escherichia coli, Enterococcus faecium, and E. gallinarum using disk diffusion. Furthermore, gas chromatography-mass spectrometry was performed to identify the bioactive compounds. Sixteen out of one hundred and thirty-three (12%) fungi extracts exhibited antibacterial properties against some of the selected bacteria. E. coli was found to be the most susceptible in contrast to E. faecium and E. gallinarum which were the most resistant. The isolate MHE 68, identified as Alternaria sp. displayed the greater spectrum of antibacterial activities by controlling selected clinical bacteria strains including resistant E. faecium and E. gallinarum. The chemical analysis of the extract from MHE 68 indicated that linoleic acid (9,12-octadecadienoic acid (Z,Z)) and cyclodecasiloxane could be accountable for the antibacterial activity. This is the first study conducted on the secondary metabolites produced by endophytic fungal strains isolated from the Pelargonium sidoides DC. possessing antibacterial properties.

Growth and Antioxidant Activity on Lactic Acid Bacteria and Antimicrobial Activity on Fish Pathogenic Bacteria By Prunella vulgaris var. aleutica Fernald Extracts (꿀풀 추출물의 유산균에 대한 생육과 항산화 활성 및 어류 병원성 미생물에 대한 항균활성)

  • Moon, Young-Gun;Yeo, In-Kyu;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1547-1554
    • /
    • 2007
  • In this study was investigated the growth effect of Prunella vulgaris. aleutica Fernald(leaf and flower) extracts on various lactic acid bacterias, electron donating ability and hydroxyl radical scavenging activity. The total cell count of Enterococcus faecium KCCM 12118, Lactobacillus rhamnosus KCCM 32826, Lactobacillus plantarum KCCM 11542, Pediococcus pentosaceus KCCM 40464 in the absence at $37^{\circ}C$ after 48hr were $2.2{\times}10^9\;cfu/ml,\;2.1{\times}10^9\;cfu/ml,\;2.3{\times}10^9cfu/ml,\;2.2{\times}10^9\;cfu/ml$. On the other hand, the total cell count of E. faecium KCCM 12118, L. rhamnosus KCCM 32826, L. plantarum KCC 11542, P. pentosaceus KCCM 40464 in the presence of Prunella vulgaris. aleutica Fernald(leaf and flower) extracts(10%) at $37^{\circ}C$ after 48hr were $4.3{\times}10^9-4.5{\times}10^9\;cfu/ml,\;4.3{\times}10^9-4.5{\times}10^9\;cfu/ml,\;4.8{\times}10^9-4.9{\times}10^9\;cfu/ml,\;4.1{\times}10^9-4.1{\times}10^9\;cfu/ml$. The electron donating ability indicated to E. faecium KCCM 12118, L. rhamnosus KCCM 32826, L. plantarum KCCM 11542, P. pentosaceus KCCM 40464 added by 10% Prunella vulgaris. aleutica Fernald(leaf and flower) extracts, respectively. when 10% native plant extracts were added lactic acid bacterias, the electron donating ability is the highest. Hydroxyl radical scavenging activity of L. plantarum KCCM 11542, L. rhamnosus KCCM 32826, E. faecium KCCM 12118, P. pentosaceus KCCM 40464 showed higher than that of control.

In vivo Antimutagenicity of Dadih Probiotic Bacteria towards Trp-P1

  • Surono, Ingrid S.;Pato, Usman;Koesnandar, Koesnandar;Hosono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.119-123
    • /
    • 2009
  • In vitro acid- and bile-tolerant lactic acid bacteria isolated and identified from Indonesian traditional fermented milk dadih might be considered as potential probiotic strains after further characterization with animal models, especially for their therapeutic properties. Five dadih lactic bacteria isolates each had moderate survival rate for 2 h at pH 2.0, as well as bile tolerance. The aim of this research was to identify candidate probiotic lactic bacteria among indigenous dadih lactic isolates originated from Bukit Tinggi, West Sumatra, especially their in vivo antimutagenic property. Milk cultured with Enterococcus faecium IS-27526 significantly lowered fecal mutagenicity of rats as compared to the control group, skim milk, and milk cultured with L. plantarum IS-20506. These results suggest that Enterococcus faecium IS-27526 may serve as a potential probiotic strain with its antimutagenicity.

Probiotic Potential of Pediococcus acidilactici and Enterococcus faecium Isolated from Indigenous Yogurt and Raw Goat Milk

  • Sarkar, Shovon Lal;Hossain, Md. Iqbal;Monika, Sharmin Akter;Sanyal, Santonu Kumar;Roy, Pravas Chandra;Hossain, Md. Anwar;Jahid, Iqbal Kabir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.276-286
    • /
    • 2020
  • Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits to the host. This study was conducted for the isolation of potential lactic acid bacteria (LAB) with probiotic properties from goat milk and yogurt. Several tests were conducted in vitro using the standard procedures for evaluating the inhibitory spectra of LAB against pathogenic bacteria; tolerance to NaCl, bile salt, and phenol; hemolytic, milk coagulation, and bile salt hydrolase activities; gastrointestinal transit tolerance; adhesion properties; and antibiotic susceptibility. Among 40 LAB strains screened according to culture characteristics, five isolates exhibited antagonistic properties. Three were identified as Pediococcus acidilactici, and two were identified as Enterococcus faecium, exploiting 16S rRNA gene sequencing. All the isolates succeeded in the gastrointestinal transit tolerance assay and successively colonized mucosal epithelial cells. Based on the results of these in vitro assays, both P. acidilactici and E. faecium can be considered as potential probiotic candidates.

Effect of a Probiotic Strain, Enterococcus faecium, on the Immune Responses of Olive Flounder (Paralichthys olivaceus)

  • Kim, Yu-Ri;Kim, Eun-Young;Choi, Sun-Young;Hossain, Muhammad Tofazzal;Oh, Ryun-Kyoung;Heo, Won-Seok;Lee, Jong-Min;Cho, Young-Chai;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.526-529
    • /
    • 2012
  • The present study was aimed to investigate the effect of a probiotic, Enterococcus faecium, on the immune responses against infection with the marine fish pathogen Lactococcus garvieae in olive flounder (Paralichthys olivaceus). The immune responses were assessed by lysozyme activity, complement activity, protease activity, and expression of proinflammatory cytokines by RT-PCR. The lysozyme and complement activities were increased between 9 to 15 and 9 to 13 days, respectively, and antiprotease activity was slightly elevated after 5 days of probiotic treatment. The TNF-${\alpha}$ and IL-$1{\beta}$ expressions were observed from kidney and spleen. The results of this study reveal that E. faecium induces immune-responsible materials and protects olive flounder from lactococcosis.

Effect of Bacteriocin-Like Inhibitory Substance (BLIS) from Enterococcus faecium DB1 on Cariogenic Streptococcus mutans Biofilm Formation

  • Kim, Ni-Na;Kim, Bong Sun;Lee, Han Bin;An, Sunghyun;Kim, Donghan;Kang, Seok-Seong
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1020-1030
    • /
    • 2022
  • The aim of the study was to investigate the effect of bacteriocin-like inhibitory substance (BLIS) from Enterococcus faecium DB1 on cariogenic Streptococcus mutans biofilm. Crystal violet staining, fluorescence, and scanning electron microscopy analyses demonstrated that the BLIS from Enterococcus faecium DB1 (DB1 BLIS) inhibited S. mutans biofilm. When DB1 BLIS was co-incubated with S. mutans, biofilm formation by S. mutans was significantly reduced (p<0.05). DB1 BLIS also destroyed the preformed biofilm of S. mutans. In addition, DB1 BLIS decreased the viability of S. mutans biofilm cells during the development of biofilm formation and in the preformed biofilm. DB1 BLIS significantly decreased the growth of S. mutans planktonic cells. Furthermore, S. mutans biofilm on the surface of saliva-coated hydroxyapatite discs was reduced by DB1 BLIS. Taken together, DB1 BLIS might be useful as a preventive and therapeutic agent against dental caries caused by S. mutans.

Fumarate Reductase-Producing Enterococci Reduce Methane Production in Rumen Fermentation In Vitro

  • Kim, Seon-Ho;Mamuad, Lovelia L.;Kim, Dong-Woon;Kim, Soo-Ki;Lee, Sang-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.558-566
    • /
    • 2016
  • Biotic agents such as fumarate-reducing bacteria can be used for controlling methane (CH4) production in the rumen. Fumarate-reducing bacteria convert fumarate to succinate by fumarate reductase, ultimately leading to the production of propionate. Fumarate-reducing bacteria in the genus Enterococcus were isolated from rumen fluid samples from slaughtered Korean native goats. The enterococci were identified as Enterococcus faecalis SROD5 and E. faecium SROD by phylogenetic analyses of 16S rRNA gene sequences. The fumarate reductase activities of the SROD5 and SROD strains were 42.13 and 37.05 mM NADH oxidized/min/mg of cellular nitrogen (N), respectively. Supplementation of rumen fermentation in vitro with the SROD5 and SROD strains produced significantly higher propionate, butyrate, and total volatile fatty acid (VFA) concentrations than controls at 12 h; VFA concentrations tended to increase after 24 h of incubation. The generated CH4 concentration was significantly lower in the SROD5 and SROD treatment groups after 24 h of incubation. These findings indicate that E. faecium SROD has potential as a direct-fed microbial additive for increasing total VFAs while decreasing CH4 production in rumen fermentation in vitro.

Detection of Antibiotic Resistance and Resistance Genes in Enterococci Isolated from Sucuk, a Traditional Turkish Dry-Fermented Sausage

  • Demirgul, Furkan;Tuncer, Yasin
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.670-681
    • /
    • 2017
  • The aim of this study was to isolate enterococci in Sucuk, a traditional Turkish dry-fermented sausage and to analyze isolates for their biodiversity, antibiotic resistance patterns and the presence of some antibiotic resistance genes. A total of 60 enterococci strains were isolated from 20 sucuk samples manufactured without using a starter culture and they were identified as E. faecium (73.3%), E. faecalis (11.7%), E. hirae (8.3%), E. durans (3.3%), E. mundtii (1.7%) and E. thailandicus (1.7%). Most of the strains were found resistant to rifampin (51.67%) followed by ciprofloxacin (38.33%), nitrofurantoin (33.33%) and erythromycin (21.67%). All strains were found susceptible to ampicillin. Only E. faecium FYE4 and FYE60 strains displayed susceptibility to all antibiotics. Other strains showed different resistance patterns to antibiotics. E. faecalis was found more resistant to antibiotics than other species. Most of the strains (61.7%) displayed resistance from between two and eight antibiotics. The ermB, ermC, gyrA, tetM, tetL and vanA genes were detected in some strains. A lack of correlation between genotypic and phenotypic analysis for some strains was detected. The results of this study indicated that Sucuk manufactured without using a starter culture is a reservoir of multiple antibiotic resistant enterococci. Consequently, Sucuk is a potential reservoir for the transmission of antibiotic resistance genes from animals to humans.